
Optimization Models and Methods for Storage Yard
Operations in Maritime Container Terminals

by

Virgile Galle

M.S. Ecole Centrale Paris (2015)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Sloan School of Management

January 12, 2018

Certified by. .
Cynthia Barnhart

Chancellor
Ford Professor of Civil and Environmental Engineering

Thesis Supervisor

Certified by. .
Patrick Jaillet

Co-director, Operations Research Center
Dugald C. Jackson Professor of Electrical Engineering & Computer Science

Thesis Supervisor

Accepted by .
Dimitris Bertsimas

Co-director, Operations Research Center

2

Optimization Models and Methods for Storage Yard

Operations in Maritime Container Terminals

by

Virgile Galle

Submitted to the Sloan School of Management
on January 12, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

Container terminals, where containers are transferred between different modes of
transportation both on the seaside and landside, are crucial links in intercontinental
supply chains. The rapid growth of container shipping and the increasing competitive
pressure to lower rates result in demand for higher productivity.

In this thesis, we design new models and methods for the combinatorial optimiza-
tion problems representing storage yard operations in maritime container terminals.
The goal is to increase the efficiency of yard cranes by decreasing unproductive con-
tainer moves (also called relocations). We consider three problems with applicability
to real-time operations.

First, we study the container relocation problem that involves finding a sequence
of container moves that minimizes the number of relocations needed to retrieve all
containers, while respecting a given order of retrieval. We propose a new binary
integer program model, perform an asymptotic average case analysis, and show that
our methods can apply to other storage systems where stacking occurs.

Second, we relax the assumption that the full retrieval order of containers is known
in advance and study the stochastic container relocation problem. We introduce a new
model, compare it with an existing one, and develop two new algorithms for both
models based on decision trees and new heuristics. We show that techniques in this
chapter apply more generally to finite horizon stochastic optimization problems with
bounded cost functions.

Third, we consider the integrated container relocation problem and yard crane
scheduling problem to find an optimal sequence of scheduled crane moves that perform
the required container movements. Taking into account practical constraints, we
present a new model, propose a binary integer program using a network flow-type
formulation, and design an efficient heuristic procedure for real-time operations based
on properties of our mathematical formulation. We relate this problem to pick-up
and delivery problems with a single vehicle and capacities at every node.

In all three chapters, the efficiency of all our algorithms are shown through ex-
tensive computational experiments on available problem instances from the literature

3

and/or on real data.

Thesis Supervisor: Cynthia Barnhart
Title: Chancellor
Title: Ford Professor of Civil and Environmental Engineering

Thesis Supervisor: Patrick Jaillet
Title: Co-director, Operations Research Center
Title: Dugald C. Jackson Professor of Electrical Engineering & Computer Science

4

Acknowledgments

“Tell me and I forget, teach me and I may remember, involve me and I learn.”

B. Franklin

First and foremost, I would like to thank my advisors Cynthia Barnhart and

Patrick Jaillet for their guidance and support during my stay at MIT. Cindy and

Patrick are not only incredible and brilliant academic advisors, they have also been

real life mentors. I would like to thank them for their patience, their flexibility, their

advice, and their kindness. In addition, they have given me many opportunities to

collaborate with brilliant people, to attend several conferences, and to intern for two

summers at great companies. I will always remember our meetings in LIDS, in 10-200,

on Skype, and especially the first presentations that I gave them. They really taught

me the way to convey a message properly, in research and in life.

I would also like to thank my doctoral committee members Vahideh Manshadi

and Juan Pablo Vielma. Vahideh has been a real role model as well as a mentor

for me. She has helped me countless times during these four years and a half. Juan

Pablo is one of the best professors I had at MIT. His expertise and insights have been

of incredible value for my research. I would also like to acknowledge an anonymous

donor without whom this work would not have been possible. I would also like to

thank Laura Rose and Andrew Carvalho who always offered their help over the years

as well as all the ORC faculty members. I am also grateful to Setareh Borjian for

being a colleague and a friend my first two years at MIT.

My PhD has also been an amazing adventure with all the friends I made at MIT.

I am grateful to all my friend from the ORC crew as well as the ORC honorary

members for the memories at MIT and on our different trips in the U.S. (San Fran-

cisco, Philadelphia, Ski trips, Retreat in Maine, New Orleans, Houston, Austin, Las

Vegas, Cape Cod, ...). Special thanks to my roommates, past and present, Andrew

L., Arthur F., Zachary O., Mathieu D., Mariapaola T., Ludovica R. and Cécile C.

(at 250 Western and Sidpac); to my very good friends and fellow INFORMS officers

5

Daniel Schonfeld and Joey H. (may JLVD live forever); to the French crew Pierre

B., Alexandre S., Ali A., Claire-Marine W., Anne C., Sébastien M., Max Burq, and

Florian F.; to the best match maker Jean Pauphilet; to the ORC soccer team with

Alexander R., Kevin R., and Nikita K.; to Daniel Smilkov and Maxime C. for wel-

coming me to the US; and thanks to Daw-sen H., Anna P., Charles T., Stefano T.,

David H. (alias Scott), Nishanth M., Rim H., and Max Biggs for all the great times

together.

I would also like to express my gratitude to some friends I met during my “trips”

to Stanford: Claire D., Matthias C. and Victor L. Finally, I cannot forget my friends

back in France: Jean-Baptiste P., Mathieu D. and Évrard B.. Special thanks to

Pierrick Piette for coming twice to Boston and for being a supportive and amazing

friend.

My family has always been there for me and their support has been very important

for me. Thanks to my mum Geneviève, my dad Jean-Loïc and my brothers, Aurèle

and Hector. I would also like to thank my godmother Catherine, my godfather Yann

and all my aunts, uncles and cousins. My gratitude also goes to my future parents-

in-law, Carole and Olivier, and my brother-in-law, Julien.

Last but not least, my greatest thanks goes to the love of my life, Sophie Trastour.

During this journey, I have relied on her unconditional support and care. She has been

my greatest motivator and friend throughout. Her perseverance, calm and brilliant

mind have helped me get through the toughest times. Thanks to her, I got to know

the greatest Léa and Rose, my other loves. This accomplishment also belongs to

them.

6

Contents

1 Introduction 21

1.1 Container Terminals . 21

1.2 Handling Equipment, Layout and New Technologies 24

1.3 Operations Research Models . 26

1.4 Notations and Mathematical Background 28

1.5 Overview and Contributions of the Thesis 29

2 Literature Review 33

2.1 The Container Relocation Problem and its Variants 33

2.1.1 The Container Relocation Problem 33

2.1.2 The Stochastic Container Relocation Problem 36

2.1.3 The Dynamic Container Relocation Problem 38

2.1.4 Other Variants of the CRP . 38

2.2 The Yard Crane Scheduling Problem 39

2.3 Other Optimization Problems in Storage Yards 42

3 The Container Relocation Problem 45

3.1 Contributions . 45

3.2 Problem Description . 46

3.3 A New Binary Formulation Based on a Binary Encoding of Configura-

tions . 48

3.3.1 Preliminaries . 48

3.3.2 New Binary IP Formulation 55

7

3.3.3 Computational Experiments 60

3.4 An Average-Case Asymptotic Analysis of the CRP 68

3.4.1 Background . 68

3.4.2 An Average-Case Asymptotic Analysis of CRP 71

4 The Stochastic Container Relocation Problem 81

4.1 Contributions . 81

4.2 Problem Description . 82

4.2.1 Motivation . 82

4.2.2 Assumptions, Notations, and Formulation 86

4.3 Decision Trees . 90

4.4 Heuristics and Lower Bounds . 96

4.4.1 Heuristics . 96

4.4.2 Lower Bounds . 101

4.5 PBFS, a New Optimal Algorithm for the SCRP 106

4.5.1 PBFS Algorithm . 107

4.6 PBFSA, Near-Optimal Algorithm with Guarantees for Large Batches 111

4.6.1 Hoeffding’s Inequality Applied to the SCRP 115

4.7 Computational Experiments . 117

4.7.1 Experiment 1: Batch Model with Small Batches 119

4.7.2 Experiment 2: Batch Model with Larger Batches 121

4.7.3 Experiment 3: Online Model and Comparison with Ku and

Arthanari [43] . 122

4.7.4 Experiment 4: Online Model with a Unique Batch 124

5 The Yard Crane Scheduling Problem with relocations 127

5.1 Contributions . 127

5.2 Problem Description . 129

5.2.1 Problem Geometry . 129

5.2.2 Requests . 132

5.2.3 Objective Function . 136

8

5.3 Binary Integer Program and Theoretical Properties 138

5.3.1 Formulation . 140

5.3.2 Relaxation of Integrality Conditions 148

5.4 Heuristic Procedure for Real-Time Operations 154

5.4.1 Search Space Decomposition 155

5.4.2 First Stage: Restricted Sampling on 𝐿 156

5.4.3 Second Stage: Repeated-Random-Start Local Search on 𝒱∩{0, 1}158

5.5 Computational Experiments . 160

5.5.1 Randomly Generated Instances 161

5.5.2 Data from a Real Terminal . 166

5.5.3 Main Insights . 170

6 Concluding Remarks 171

6.1 Summary . 171

6.2 Future Research Directions . 173

6.2.1 Direct Extensions from the Thesis 173

6.2.2 New Challenges for Storage Yards 174

A Appendix on the Container Relocation Problem 183

A.1 Extensions of CRP-I . 183

A.1.1 First Extension: Non-Uniform Relocations 183

A.1.2 Second Extension: Minimizing Crane Travel Time 183

A.1.3 Third Extension: the “Relaxed Restricted” CRP 185

A.2 Proof of Lemma 3 . 187

B Appendix on the Stochastic Container Relocation Problem 191

B.1 Theoretical and Computational Comparison of the Batch and the On-

line Models . 191

B.1.1 Theoretical Comparison: Proof of Lemma 4 191

B.1.2 Computational Comparison 194

B.2 Proof of Lemma 8 . 195

9

B.3 Technical Proofs of Section 4.6.1 . 201

B.4 Computational Experiments Tables 205

C Appendix on the Yard Crane Scheduling Problem with Relocations211

C.1 Notations Summary . 211

C.2 Technical Proofs . 213

C.3 Speed up of Λ(𝑣) . 245

10

List of Figures

1-1 Malcolm McLean’s refitted oil tanker carrying the first container ship-

ment in April 1956 (source: Commons wikimedia). 22

1-2 Largest container ship in 2017, operated by Orient Overseas Container

Line (source: occl.com). 22

1-3 International seaborne trade carried by container ships from 1980 to

2016 in million tons loaded (source: UNCTAD, Clarkson Research

Services). 23

1-4 Market share of major terminal operators worldwide as of mid-year

2015 (source: Drewry). 23

1-5 The world’s top 50 containers in 2012 in terms of throughput (source:

World Shipping Council). 24

1-6 Schematic representation of a container terminal (adapted from [27]). 25

1-7 Geometry and notations of a container block. 28

3-1 Configuration for the CRP with 3 tiers, 3 stacks, and 6 containers. The

optimal solution performs 3 relocations: relocate the container labeled

2 from Stack 3 to Stack 1 on the top of the container labeled 3; relocate

4 from 3 to 2 on the top of 6; retrieve 1; retrieve 2; retrieve 3; retrieve

4; relocate 6 from 2 to the empty Stack 1; retrieve 5; finally, retrieve 6. 48

3-2 Configuration including artificial containers (example from [9]). . . . 49

3-3 Decomposition of the configuration 𝐵ℎ,𝑆+1 (The right part has 𝑆 stacks). 73

3-4 Simulation of the convergence of the ratio. 78

3-5 Simulation of the convergence of the difference. 78

11

4-1 Timeline of events for the batch model with three trucks. 83

4-2 SCRP example. The left configuration is the input to our problem.

The configuration in the middle denotes each container with an ID 𝑖𝑙

where 𝑙 = 1, . . . , 6. The configuration on the right denotes the order

of the first batch after it is revealed. 84

4-3 Average truck turn times in minutes by terminal at Los Angeles-Long

Beach port in June and July 2017 (source: JOC.com). The dashed line

shows the length of a time window (60 minutes) in the truck appoint-

ment system. 85

4-4 Decision tree represented with nodes. The colored arrows represent

different values of immediate cost, i.e., the number of containers block-

ing the target container (dotted green: 0, dashed orange: 1, thick solid

red: 2). 93

4-5 Decision tree represented with configurations. The colored arrows rep-

resent different values of immediate cost, i.e., the number of containers

blocking the target container (dotted green: 0, dashed orange: 1, thick

solid red: 2). Red circled numbers highlight containers blocking the

target container. 94

4-6 Abstraction procedure. 95

4-7 Decisions of the EM heuristic on an example with 5 tiers, 4 stacks, and

9 containers (3 per batch). Under the batch model, the first batch has

been revealed and we present the decisions to retrieve the first container

made by EM. The container with the circled red label is the current

blocking container. Numbers under the configuration correspond to

the stack indices 𝑚𝑖𝑛(𝑠). The underlined green (respectively squared

orange) indices correspond to the selected stack with the corresponding

𝑀 when Rule 1 (respectively Rule 2) applies. 99

12

https://www.joc.com/trucking-logistics/drayage/rising-la-lb-port-truck-turns-peak-season-warning_20170801.html

4-8 Decisions of the EG heuristic in an example with 5 tiers, 4 stacks, and

9 containers (3 in each batch). Under the batch model, the first batch

has been revealed and we present the two-phases decisions to retrieve

the first container made by EG. 100

4-9 Example of a single stack configuration. 103

4-10 Example for look-ahead lower bounds. 105

4-11 Illustration of the pruning rule. First, offspring are ordered by nonde-

creasing lower bounds. Then we start computing the objective function

starting at 𝑛(1). We stop computing the objective functions once the

pruning rule is reached. In the figure above, green nodes linked with

full green arrows are nodes in Γ𝑃𝐵𝐹𝑆
𝑛 , i.e., 𝑓(.) has been computed. Or-

ange nodes linked with dashed orange arrows are nodes in Δ𝑛 ∖Γ𝑃𝐵𝐹𝑆
𝑛 ,

i.e., 𝑓(.) does not need to be computed which is represented here by ×. 109

4-12 Illustration of the sampling rule. In this figure, the smallest batch is

batch 1; therefore 𝑤𝑚𝑖𝑛 = 1, and there are 6 containers, thus 𝜆𝑛 = 6.

We have 𝜆* = 3 so 𝛿𝑛 = 1, and thus 𝜖𝑛 = 𝜖. These values allow us to

compute the number of samples required 𝑁𝑛(𝜖𝑛). If 𝑁𝑛(𝜖𝑛) in less than

the total number of offspring |Ω𝑛| = 𝐶𝑤𝑚𝑖𝑛
! = 3!, then we only compute

𝑓(.) for sampled nodes. Ψ𝑃𝐵𝐹𝑆𝐴
𝑛 represents the subset of sampled nodes

colored green and linked with full green arrows, and for which 𝑓(.)

needs to be computed. Note that
⃒⃒
Ψ𝑃𝐵𝐹𝑆𝐴

𝑛

⃒⃒
= 𝑁𝑛(𝜖𝑛). Orange nodes

linked with dashed orange arrows are nodes in Ω𝑛 ∖Ψ𝑃𝐵𝐹𝑆𝐴
𝑛 , i.e., there

were not sampled and 𝑓(.) does not need to be computed which is

represented here by ×. Finally, the approximate value of 𝑓(𝑛) is the

average of the objective values over all sampled nodes. 113

5-1 A top view of a block with three different I/O points configurations. . 130

5-2 Pattern of typical YC movements for a given cycle. Striped blue indi-

cates empty movements, solid red loaded movements and dotted green

handling movements. 131

13

5-3 A top view of a block with Asian configuration. The integer in each

stack of the block corresponds to the number of containers currently

stored in the stack. For stacks in 𝒮𝑅, we highlight containers to be

retrieved (𝒩𝑟) and relocated (𝒩𝑢). 136

5-4 Performance of algorithms as function of 𝛾: Each point represents the

mean indicator obtained by different algorithms over the 30 randomly

generated instances and the error bars represent ±1.645 standard devi-

ations. The red horizontal line corresponds to the mean of the baseline

and the blue vertical line correspond to the lower bound on 𝛾 in Con-

dition (A). 163

5-5 Impact of 𝛿: Each point represents the mean indicator obtained by the

heuristic with 𝛾 = 50 over all 30 instances and the error bars represent

±1.645 standard deviations. 164

5-6 Impact of 𝑁 : Each point represents the mean indicator obtained by the

heuristic with 𝛾 = 50 over all 30 instances and the error bars represent

±1.645 standard deviations. 165

5-7 Distribution of 𝑁 of requests from two blocks for 17 days in September

2017. 167

5-8 Performance of heuristic algorithm as function of 𝛾 on real data: Each

point represents the average crane travel time obtained by the heuristic

under the real and ideal scenarios. The red horizontal line corresponds

to the mean of the current practice and the blue vertical line correspond

to the lower bound on 𝛾 in Condition (A). 169

B-1 Distributions of percentage difference between the batch and the online

models from 100 randomly generated instances. 195

C-1 Illustration of two feasible points 𝐷1 and 𝐷2 such that their average is

an extreme point 𝐷* in the case where Condition (*) holds. Numbers

on the right show the change of balance for nodes (𝑟𝑗)𝑗∈{1,...,𝐽}. 229

14

C-2 Illustration of two feasible points 𝐷1 and 𝐷2 such that their average

is an extreme point 𝐷* in the case where Condition (*) does not hold

but Condition (**) does. Numbers on the right show the change of

balance for nodes (𝑠𝑗)𝑗∈{1,...,𝐽} and (𝑡𝑖)𝑖∈{1,...,𝐼}. 234

15

16

List of Tables

3.1 Difficulty of instances from [9]. 61

3.2 Computational results of CRP-I on non-trivial instances (in parenthesis

the results from [81]). In bold, the classes for which CRP-I solves more

instances optimally than BRP-II-A. 62

3.3 Efficiency indicators of CRP-I on non-trivial instances (in paranthesis

the number of variables from [81] with preprocessing). 63

3.4 Efficiency of the upper bound and hardness of the CRP on non-trivial

instances. 64

3.5 Comparison between our formulation CRP-I, BRP-II* and branch-and-bound (B&B)

from [20], BRP2ci from [18] and CC15&PDB0 from [42] on a subset of instances

from [9]. Time limits (BRP-II*: 1 day; BRP2ci: 900 seconds) and instances not

solved optimally are noted by n.a.. Times are given in seconds. * indicates that

the instance is trivial. 66

3.6 Further comparison between our formulation CRP-I and BRP2ci from [18] on an

extended subset of instances from [9]. Time limit (BRP2ci: 900 seconds) and

instances not solved optimally are noted by n.a. * indicates that the instance is

trivial. 67

4.1 Instances solved by PBFS in the batch model with small batches. . . 120

4.2 Instances solved by PBFSA in the batch model with larger batches. . 121

4.3 Instances solved by PBFS and Ku and Arthanari [43] in the online

model with small batch. 123

17

4.4 Instances solved with PBFS and heuristic L in the online model with

a unique batch. 124

5.1 Pick-up and put-down costs for different types of requests. Terms in

bold identify the variable costs. 146

5.2 Percentage of optimization problems not proven to be solved optimally

by the IP in the practical time limit of 60 seconds. 164

5.3 Data summary for requests in two blocks for 17 days in 9/2017. . . . 166

B.1 Results of experiment 1: Performance of PBFS, heuristics, and tight-

ness of lower bounds for a fill rate of 50 percent in the batch model,

in the case of small batches. Bold numbers highlight the best heuristic

for a given problem size. 205

B.2 Results of experiment 1: Performance of PBFS, heuristics, and tight-

ness of lower bounds for a fill rate of 67 percent in the batch model,

in the case of small batches. Bold numbers highlight the best heuristic

for a given problem size. 206

B.3 Results of experiment 2: Performance of PBFSA, heuristics, and tight-

ness of lower bounds for a fill rate of 50 percent in the batch model

with larger batches. Bold numbers highlight the best heuristic for a

given problem size. 207

B.4 Results of experiment 2: Performance of PBFSA, heuristics, and tight-

ness of lower bounds for a fill rate of 67 percent in the batch model

with larger batches. Bold numbers highlight the best heuristic for a

given problem size. 208

B.5 Results of experiment 3: Performance of heuristics and tightness of

lower bounds for a fill rate of 50 percent in the online model with

small batches. Bold numbers highlight the best heuristic for a given

problem size. Numbers in parentheses are taken from [43]. 209

18

B.6 Results of experiment 3: Performance of heuristics and tightness of

lower bounds for a fill rate of 67 percent in the online model with

small batches. Bold numbers highlight the best heuristic for a given

problem size. Numbers in parentheses are taken from [43]. 210

C.1 Inputs of the simulation study (yard speed from Liebherr.com and TEU

size from dsv.com). Assumptions: No acceleration is considered. All

containers are 20 feet long and dry. Note that these values are similar

to [28]. No separating space between containers is considered. 214

19

https://www.liebherr.com/shared/media/maritime-cranes/downloads-and-brochures/brochures/lcc/liebherr-rtg-cranes-technical-description.pdf
http://www.dsv.com/sea-freight/sea-container-description/dry-container

20

Chapter 1

Introduction

“A simple calculation shows that there are enough containers on the planet to build

more than two 8-foot-high walls around the equator” ([27])

This chapter provides a general overview of container terminals and their op-

erations. Section 1.1 describes the continuously growing importance of container

terminals in today’s international trade system. Section 1.2 introduces the typical

handling equipment, layout and new technologies of container terminals. Section 1.3

describes the wide range of optimization problems arising in container terminals. Sec-

tion 1.4 presents the common notations and some general mathematical background

for subsequent chapters of the thesis. Section 1.5 details the structure of the thesis

along with the main contributions of each chapter.

1.1 Container Terminals

The birth of container shipping is traditionally considered to be April 1956 when

Malcolm McLean transported 58 containers from Newark to Houston (see Figure 1-

1). Since then, the container shipping industry has continuously grown. In 2017,

the largest container ship (see Figure 1-2) can transport more than 21,400 Twenty-

Foot Equivalent Units (TEUs). Today, the term containerization refers to the system

of intermodal freight transport using containers. In such systems, the dimension of

21

containers (20 foot equivalent units (1 TEU), 40 foot equivalent units (2 TEUs), 45

foot equivalent units (high-cubes)) needed to be standardized to ease their use by

various means of transportation (ships, truck, trains,...).

Figure 1-1: Malcolm McLean’s refitted oil tanker carrying the first container shipment
in April 1956 (source: Commons wikimedia).

Figure 1-2: Largest container ship in 2017, operated by Orient Overseas Container
Line (source: occl.com).

This trend of containerization, confirmed by the evolution of seaborne trade car-

ried by container ships, is presented in a study conducted beginning in 2017. Figure

1-3 shows that the weight of goods carried via containers has multiplied by more

than 16 from 1980 to 2016. In addition, Alphaliner.com estimated the number of

TEUs in the global containership fleet on January 1𝑠𝑡 2017 to be around 23.4 million.

Naturally, the major owners of these containers are also major ship operators. As of

22

October 30 2017, APM-Maersk, Mediterranean Shg Co and CMA CGM Group were

the top 3 owners in both categories.

Figure 1-3: International seaborne trade carried by container ships from 1980 to 2016
in million tons loaded (source: UNCTAD, Clarkson Research Services).

With the rapid growth of container shipping, container terminals have flourished to

become crucial links in intercontinental supply chains. Indeed, this is where containers

are transferred between the different modes of transportation. Figure 1-4 identifies

the major global terminal operators in 2015 based on market share.

Figure 1-4: Market share of major terminal operators worldwide as of mid-year 2015
(source: Drewry).

Finally, Figure 1-5 shows a map of the top 50 largest terminals in terms of through-

23

put in 2012. Most large terminals are located in Eastern Asia, with the other ports

widely spread around the globe, demonstrating the global impact of containerization.

Figure 1-5: The world’s top 50 containers in 2012 in terms of throughput (source:
World Shipping Council).

1.2 Handling Equipment, Layout and New Technolo-

gies

The typical handling equipment at container terminals involves Quay Cranes (QC);

Yard Cranes which can be a single rubber-tired gantry crane (RTG), a single rail-

mounted gantry crane (RMG), double RMGs, twin RMGs and triple RMGs; Internal

vehicles including yard trucks, straddle carriers, chassis, automated guided vehicles

(AGV) and land cranes (used to load trains); and External modes of transportation

such as external trucks or trains.

Figure 1-6 presents the typical layout of a container terminal with the three main

sections of a container terminal: 1. the Sea-side including the Vessel, the Quay and

the Internal transport areas; 2. the Storage Yard ; and 3. the Land-side including

external transport areas and the gate. Each piece of equipment operates in one or

several sections of a container terminal (see Figure 1-6).

24

Sea-side Storage	Yard Land-side

Import	Containers

Export	Containers

Transshipment	Containers

Figure 1-6: Schematic representation of a container terminal (adapted from [27]).

A container can belong to one of three types: Import containers arrive from the

sea-side and leave on inland transport modes; export containers arrive from inland

transport modes and leave by the sea-side on vessels; and transshipment contain-

ers arrive and leave on the sea-side. Typically, empty, refrigerated (or reefer) and

hazardous containers are usually assigned to specific areas within the yard.

The choice of layout and equipment highly impact the productivity of the ter-

minal and highly depend on the proportion of import, export, and transshipment

containers, as well as the overall target storage capacity of the terminal. For in-

stance, straddle carriers provide better flexibility but a lower storage capacity than

yard cranes. Several studies, such as the most recent one in [37], present a more

detailed list of handling equipment and terminal layouts and evaluate their impact

on the overall terminal performance under different metrics.

Finally, new technologies constantly impact all parts of container terminal oper-

ations. On the sea-side, a new generation of fully automated quay cranes have been

developed in the past 5 years with double or triple lifting trolley and shuttles to per-

form faster horizontal movements of containers. Concerning internal transport, the

25

number of automated vehicles has increased significantly, enhancing the use of GPS

and RFID technologies to create coordination and track containers and resources. In

the storage yard, new cranes with handling and overpassing capabilities have been

engineered. Finally, many innovative solutions have focused on designing new layouts

and stacking systems based on innovations in warehousing, such as rack-based com-

pact storage or overhead grid rail systems, with the most famous example being the

ultra-high container warehouse of Ez-Indus in South Korea.

1.3 Operations Research Models

Since 2008, researchers have introduced and studied many operations research models

to tackle various problems at container terminals. Gharehgozli et al. [27] report

177 papers published since 2008 that consider optimization problems in container

terminals. The following list summarizes the main models found in the literature

classified by sections of the terminal. For extensive literature reviews on general

container terminal operations, we refer the reader to [27, 64].

Sea-side. There are four main problems related to sea-side operations. Bierwirth

and Miesel [2] present an extensive survey of papers studying the following problems

before 2010.

The container stowage problem (CSP) (for a recent example, see [16]) is concerned

with the placement of a container at a ship slot to minimize the port stay times

of ships, ensure stability, obey stress operating limits of the ships, and maximize

QC utilization. Container characteristics such as weight, size, port of unloading,

and type (reefer or hazardous) are typically taken into account as constraints.

The berth allocation problem (BAP) (for a recent example, see[78]) considers the

minimization of ship waiting and handling times given spatial (discrete vs con-

tinuous berths), temporal (static or dynamic), and handling time (dependent on

berthing position, QC assignment, and/or QC schedules vs. fixed) constraints.

The quay crane assignment problem (QCAP) aims at reducing the number of QC

26

setups and QC travel times to maximize crane productivity. In practice, QCAP

is solved by greedy rules. This problem has mostly been considered jointly with

the BAP in papers such as in [30].

The quay crane scheduling problem (QCSP) (for a recent example, see [48]) tackles

the design of optimal schedules for QCs to maximize throughput, and minimize

ship handling time while satisfying constraints such as crane crossovers, minimum

distance between cranes, and unloading before loading.

Finally, more recently, works similar to [13] have integrated the BAP, QCAP and

QCSP to provide more globally optimal solutions.

Land-side.

Internal transportation problems include determining shortest-time routes, sequenc-

ing requests, dispatching vehicles in real-time, and sizing the fleet of internal

vehicles (see [8]).

Gate operations planning problems primarily consist of truck appointment system

design (also called time window management), train loading and unloading - as

well as congestion reduction at the gates - by analyzing queuing models or through

simulation.

Storage yard. The literature has historically been divided between yard crane

operations planning (see YSCP) and container relocations minimization (see CRP,

SP, DCRP and PMP). A detailed discussion of these problems is provided in Chapter

2.

The yard crane scheduling problem (YCSP) is concerned with sequencing storage

and retrieval operations - without considering relocations - to minimize makespan

or average vehicle job waiting time (or delay) or to maximize crane utilization.

The container relocation problem (CRP) (also called block relocation problem, BRP)

is concerned with finding a sequence of moves of containers that minimizes the

number of relocations needed to retrieve all containers, while respecting a given

order of retrieval.

27

The stacking problem (SP) aims at properly locating incoming containers such that

the future handling effort (relocation or pre-marshalling as defined below) are

decreased significantly.

The dynamic container relocation problem (DCRP) results from the combination of

the CRP and the SP.

The pre-marshalling problem (PMP) identifies possibilities to avoid future relocations

by pre-marshalling containers. Pre-marshalling corresponds to re-positioning con-

tainers so that a minimum number of relocations are needed when containers are

loaded onto the ships. This problem applies especially in the case of export and

transshipment containers when the ship’s stowage plans are known in advance.

1.4 Notations and Mathematical Background

Yard Crane (YC)
stack

tiers (T or Z)

stacks
(S or X)

row
s (Y

)

Figure 1-7: Geometry and notations of a container block.

Due to the lack of space, containers are stacked on the top of each other creating

blocks of containers as shown in Figure 1-7. A block consists of 𝑆 (or𝑋) stacks, 𝑌 rows

and 𝑇 (or 𝑍) tiers (see Figure 1-7) and we assume that this block is served by a single

yard crane (YC). In several problems, only one row is considered. A configuration

refers to a two-dimensional array representing a single row. In addition, we denote

28

by 𝐶 the number of containers initially in a given configuration or block.

This thesis draws on several analyses enabled by recent advancements in mathe-

matical research. Chapters 3 and 5 introduce binary integer programs. The efficacy of

integer programming has recently been boosted by the great improvement of solvers

such as Gurobi and the dramatic speed-ups of computational processors. Junger et

al. [36] present a recent review on integer programming techniques. Chapter 4 and

5 tackle stochastic optimization problems which can be formulated as dynamic pro-

gramming models. Related to this topic, Bertsekas [1] and Sennott [62] provide a

general review of techniques on finite horizon dynamic programming as well as some

concepts from approximate dynamic programming.

1.5 Overview and Contributions of the Thesis

Chapter 2: literature review. In this chapter, we present an extensive literature

review of the main optimization problems in container terminal storage yards. We

first present a thorough literature review on the container relocation problem and its

variants as well as the yard crane scheduling problem. Then, we provide a general

literature review on the storage problem and the pre-marshalling problem.

Chapter 3: the container relocation problem. This chapter focuses on the

restricted container relocation problem enforcing that only containers blocking the

target container can be relocated. The first section of this chapter is based on our

published paper A New Binary Formulation of the Restricted Container Relocation

Problem Based on a Binary Encoding of Configurations [22]. First, we improve upon

and enhance an existing binary encoding and using it, formulate the restricted CRP

as a binary integer programming problem in which we exploit structural properties of

the optimal solution. This integer programming formulation reduces significantly the

number of variables and constraints compared to existing formulations. Its efficiency

is shown through computational results on small and medium sized instances taken

from the literature. Subsequently, the second section is based on our published paper

29

An Average-Case Asymptotic Analysis of the Container Relocation Problem [25]. We

focus on average case analysis of the CRP when the number of stacks grows asymp-

totically. We show that the expected minimum number of relocations converges to a

simple and intuitive lower bound for which we give an analytical formula.

While this is not developed in the thesis, we mention that the author also devel-

oped an A* based algorithm presented in [4]. Finally, we developed two Matlab GUI

interfaces. The first interface is a practical decision tool of potential interest for prac-

titioners and can use solutions both from this chapter and Chapter 4. The second one

could be used to test and compare human abilities with different algorithms. Both

user interfaces are available at https://github.com/vgalle/CRP_GUIs.

Chapter 4: the stochastic container relocation problem. In the CRP, the as-

sumption of knowing the full retrieval order of containers is particularly unrealistic in

real operations. This chapter studies the stochastic CRP (SCRP), which relaxes this

assumption. It is based on our submitted paper The Stochastic Container Relocation

Problem [24]. A new multistage stochastic model, called the batch model, is intro-

duced, motivated, and compared with an existing model (the online model). The

two main contributions are an optimal algorithm called Pruning-Best-First-Search

(PBFS) and a randomized approximate algorithm called PBFS-Approximate with a

bounded average error. Both algorithms, applicable in the batch and online models,

are based on a new family of lower bounds for which we show some theoretical prop-

erties. Moreover, we introduce two new heuristics outperforming the best existing

heuristics. Algorithms, bounds and heuristics are tested in an extensive computa-

tional section. Finally, based on strong computational evidence, we conjecture the

optimality of the “leveling" heuristic in a special “no information" case, for which any

of the remaining containers, at any retrieval stage, is equally likely to be retrieved

next.

Chapter 5: the yard crane scheduling problem with relocations. In the

previous chapters, some practical characteristics such as stacking, the third dimen-

30

https://github.com/vgalle/CRP_GUIs

sion of the block, the actual travel time of the crane and limited flexibility of the

order in which service can occur are not taken into account. This chapter considers a

more practical model and introduces a novel optimization problem resulting from the

integration of the yard crane scheduling problem and the container relocation prob-

lem. The work in this chapter is based on our working paper Yard Crane Scheduling

for Container Storage, Retrieval, and Relocation [23]. This chapter is the first work

to consider a general model that integrates the challenges of these two problems by

simultaneously scheduling storage, retrieval and relocations requests and deciding on

storage and relocation positions. We formulate this problem as an integer program

that jointly optimizes current crane travel time and future relocations. Based on

the structure of the proposed formulation, we propose a heuristic based on the LP

relaxation of subproblems embedded in a local search scheme. Finally, we show the

value of our solutions on both simulated instances as well as real data from a port

terminal.

Chapter 6: concluding remarks. This chapter presents the main conclusions

drawn from the thesis and suggests several directions for future research.

31

32

Chapter 2

Literature Review

General reviews and classification surveys of the existing literature on the container

relocation problem, the yard crane scheduling problem and other related problems

such as stacking or pre-marshalling problems can be found in [27, 7, 49, 64, 65].

2.1 The Container Relocation Problem and its Vari-

ants

2.1.1 The Container Relocation Problem

Due to limited space in the storage area of maritime ports, containers are stacked on

top of each other. The resulting stacks create rows of containers as shown in 1-7. If a

container that needs to be retrieved (target container) is not located at the top and

is covered by other containers, blocking containers must be relocated. As a result,

during the retrieval process, the yard cranes perform one or more relocation moves.

Such relocations (also called reshuffles) are costly for the port operators and result in

delays in the retrieval process. The container relocation problem (CRP) (also known

as the block relocation problem) addresses this challenge by minimizing the number

of relocations. The CRP applies to a broad range of two-dimensional storage systems

involving containers, boxes, pallets or steel plates.

The CRP with the classical assumptions described in detail in Section 3.2 is re-

33

ferred to as static and full information: static because no new containers arrive during

the retrieval process and full information because we know the full retrieval order at

the beginning of the retrieval process. Finally, we mention that the restricted CRP

assumes that only containers blocking the target container can be moved.

Under these assumptions, the problem was first formulated in [38] in a dynamic

programming model. It has been shown in [10] that both the restricted and unre-

stricted CRP are 𝒩𝒫-hard.The solution approaches developed in literature on the

CRP can be partitioned into three: integer programming approaches, other exact

approaches such as branch-and-bound or A* algorithm and finally heuristic solution

approaches.

Integer programming approaches

Wan et al. [74] formulate one of the first integer programming models for the CRP and

develop an IP-based heuristic capable of obtaining near-optimal solutions. Caserta et

al. [10] propose another intuitive formulation of the problem, called BRP-II, as well as

an efficient heuristic. Tang et al. [67] propose a very similar formulation with fewer

variables than in BRP-II, present heuristics and a worst case analysis. Expósito-

Izquierdo et al. [20] correct BRP-II and rename their new formulation BRP-II*.

Eskandari and Azari [18] also correct BRP-II and propose an improved formulation

called BRP2ci by adding valid inequalities. Zehendner et al. [81] correct and improve

BRP-II to get formulation BRP-II-A by removing some variables, tightening some

constraints, introducing a new upper bound, and applying a preprocessing step to

fix several variables. The two latter formulations being the most recent ones, we

compare our new formulation to these state-of-the-art solutions in Section 3.3. As

we mentioned, these are both improved corrections of BRP-II in [10], but they differ

in the nature of added cuts as well as the preprocessing step in [81]. In addition,

the computational results provided by both studies differ. While Zehendner et al.

[81] give results for BRP-II-A on average over set of instances, Eskandari and Azari

[18] present results only on a small subset of instances for BRP2ci, making their

comparison difficult. Consequently, we show through our experiments that our new

34

formulation outperforms BRP2ci on available instances from [18] as well as BRP-

II-A on average over sets of instances. Finally, Caserta et al.[10] and Petering and

Hussein [58] develop formulations for the unrestricted CRP, but both are unable to

solve small-sized instances efficiently.

Other exact approaches

Like for most multi-period combinatorial optimization problems, the previous IP for-

mulations require variables with many indices. Therefore, even though the number

of variables and constraints are polynomial in the size of the problem, these formula-

tions become too large to even fit in memory of actual solvers in the case of real-sized

problems. To bypass this issue, a recent trend has been to look at more efficient ways

to explore the branch-and-bound tree or even decrease its size using the structural

properties of the problem. Ünlüyurt and Aydın [71] and Expósito-Izquierdo et al.

[20] suggest two branch-and-bound approaches with several heuristics based on this

idea. Another solution using the 𝐴* algorithm is explored in [87], and built upon in

[4, 66]. Zehendner and Feillet [83] present another solution using branch-and-price

and Ku and Arthanari [42] introduce another solution approach based on the abstrac-

tion method. More recently, Tricoire et al. [70] use an improved B&B to solve the

unrestricted problem.

Heuristics

As both the restrcited and unrestricted CRP are 𝒩𝒫-hard (see [10]), an alternative

approach is to use quick and efficient heuristics providing sub-optimal solutions such

as in [21, 35]. Caserta et al. [10] introduce a “MinMax” policy that is defined and

generalized later in the thesis. Wu and Ting [76] propose a beam search heuristic,

and Wu and Ting [77] develop the Group Assignment Heuristic (GAH). Tricoire et

al. [70] develops a rake search heuristic. Finally, we mention lower bounds for the

CRP are developed in [38, 87, 66].

35

Available instances

To evaluate the efficiency of these methods, several sets of instances have been used.

The most common one appears in [9] and is used in [10, 87, 58, 5, 18, 20, 81]. In

these instances, 𝑇 and 𝑆 range from 3 to 10, 𝐶 is taken to be (𝑇 − 2)𝑆 with 𝑇 − 2

containers per stack resulting in 21 classes of problem. With 40 instances per class,

this set contains a total of 840 instances. We use these instances in Section 3.3.3.

Instances from [47] consider multiple rows and are used to test heuristics. Zhu et al.

[87] introduce both instances with distinct and non-distinct priorities.

2.1.2 The Stochastic Container Relocation Problem

As it was previously mentioned, the assumption of full information on the retrieval

order is unrealistic given that arrival times of external trucks at the terminal are

generally unpredictable due to uncertain conditions. Nevertheless, new technology

advancements such as truck appointment systems (TAS’s) and GPS tracking can

help predict relative truck arrival times. Thus, although the exact retrieval order

might not be known, some information on trucks’ arrival times might be available,

which motivates the introduction of a stochastic version of the CRP.

A common assumption is that, for each container, there is a time window in which

a truck driver will arrive to retrieve it. We refer to a batch of containers as the set

of containers stacked in the same row and with the same arrival time window. This

information can be either inferred using machine learning algorithms, not yet much

discussed in the literature or obtained by using the appointment time windows in a

TAS, which has gained attention over the last decade. The first TAS was implemented

by Hong Kong International Terminals (HIT) in 1997. It uses 30-minute time slots,

where trucks can register (see [53]). Another TAS was introduced in New Zealand

in 2007. Two other studies (see [31, 52]) evaluate the impact of TAS, in reducing

truck idling time by increasing on-time ratio. More recent information can be found

in [59, 3].

On the modeling side, Zehendner and Feillet [82] formulate an IP to get the

36

optimal number of slots a TAS should offer for each batch. Very few studies have

tackled the SCRP, also referred to as CRP with Time Windows. This problem was

first modeled by Zhao and Goodchild [86]. In their original model, each container

is assigned to a batch. Batches of containers are ordered such that all containers

in a batch must be retrieved before any containers from a later batch are retrieved.

Furthermore, the relative retrieval order of containers within a given batch is assumed

to be a random permutation. In Chapter 4, we will refer to the model from [86] as

the online model. In Section 4.2, we discuss in more detail how this model assumes

information is revealed. For the online model, Zhao and Goodchild [86] develop

a myopic heuristic (called RDH) and study, in different settings with two or more

groups, the value of information using RDH. They conclude that a small improvement

in the information system reduces the number of relocations significantly. Asperen

et al. [72] use a simulation tool to evaluate the effect of a TAS on many statistics

including the ratio of relocations to retrievals. Their decision rules are based on

several heuristics including the “leveling,” random or “traveling distance” heuristics.

More recently, Ku and Arthanari [43] also use the online model. They formulate the

SCRP under the online model as a finite horizon dynamic programming problem,

and suggest a decision tree scheme to solve it optimally. They also introduce a new

heuristic called expected reshuffling index (ERI), which outperforms RDH, and they

perform computational experiments based on available test instances. In Chapter 4,

we refer frequently to this work, use some of their techniques, as well as their available

test instances to evaluate our algorithms.

In another recent study related to the SCRP, Zehendner et al. [84] study the

online container relocation problem, which corresponds to an adversarial model. They

prove that the number of relocations performed by the leveling policy can be upper-

bounded by a linear function of the number of blocking containers and provide a tight

competitive ratio for this policy.

37

2.1.3 The Dynamic Container Relocation Problem

Closely related to Chapter 5, the dynamic CRP (DCRP) extends the CRP by con-

sidering both stacking and retrieval requests. However, most papers either consider

the number of relocations as the objective and/or assume that the schedule of these

requests is given and/or restrict the problem to a single row. The first work for the

DCRP can be found in [74]. The authors assume that the order of requests is given.

They identify the optimal solution to empty a row using an IP similar to the ones

proposed for the CRP. Then they suggest four heuristics to select locations for storage

requests. Three heuristics are rule-based (and inspired by heuristics developed for the

CRP) and one is based on the proposed mathematical formulation. Subsequently, Rei

and Pedroso [60] consider a similar problem where items have release and due dates

and need to go through a storage area under a given amount of relocations. They

show this problem belongs to the complexity class 𝒩𝒫 and formulate solutions based

on graph-coloring. Motivated by the complexity of the problem, they present a tech-

nique to reduce the size of the search space and propose two approaches: the first one

is based on multiple simulation methods which use a construction heuristic embedded

in a discrete-event simulation model. The second solution proposes a stochastic tree

search scheme using best-first-search. Hakan Akyüz and Lee [33] consider the same

problem as in [74] where the arrival (departure) sequences of containers to (from) the

yard is assumed to be known a priori. A binary IP is developed to solve the DCRP

as well as three types of heuristic methods (index based, binary IP based, and beam

search heuristics). Borjian et al. [5] introduce a variant of the DCRP by considering

a class of flexible service policies to make minor changes in the order of container

retrievals (this class is generalized by our flexibilities introduced in Chapter 5).

2.1.4 Other Variants of the CRP

Different objective functions have been considered such as the crane travel time,

trucks’ waiting times or weighted relocations. López-Plata et al. [50] propose a

binary IP to minimize waiting times. Priorities could also be given among groups of

38

blocks, and Zhu et al. [87] and Tanaka and Takii [66] consider B&B approaches for

this case. while de Melo da Silva et al. [15] introduce another variant of the CRP

called the Block Retrieval problem. We also mention that Tang et al. [68] solve the

CRP using integer programming in the case of steel plates, for which our approach

can also be applied. Lee and Lee [47] extend the previous idea and propose a heuristic

approach to solve the container retrieval problem. In this problem, all rows in the

block are considered and the objective is the crane travel time. The main difference

with the YCSP considering only retrieval requests is that the goal of this problem is

to retrieve all containers of the block with a pre-defined order that is given initially.

2.2 The Yard Crane Scheduling Problem

The first model for YCSP with a single crane, introduced in [39], considers only

retrieval requests and neither storage or relocations enforced by these retrievals. It

assumes that containers of the same type are stored in the same row. The retrieval

schedule is given by groups of containers and the goal is to minimize crane travel

time through the rows (intra rows travel time is not taken into account). Several

approaches were tried to solve this problem: Kim and Kim [39] propose the first mixed

integer program (MIP). Narasimhan and Palekar [54] show the 𝒩𝒫-completeness of

the problem, prove some structural properties on the optimal solution and suggest a

MIP as well as a branch and bound approach. The best solution in [41] uses encoding

and decoding procedures embedded in a neighborhood beam search. Later, Lee et al.

[44] consider the same problem for two blocks (one crane per block) and introduce a

simulated annealing scheme.

Ng and Mak [55] extend the previous problem by including storage requests

but still without considering relocations. They assume that each request has fixed

start/end locations and different ready times. In this setting, they assume the pro-

cessing time of each request and traveling times between requests are given as inputs.

Minimizing the sum of request waiting times in this setting is equivalent to a variant

of the job shop scheduling problem with inter-job waiting times. They propose a

39

solution based on a branch-and-bound (B&B) approach. For the same problem, Guo

et al. [32] suggest to use A* and RBA* with an admissible heuristic.

Vis and Roodbergen [73] are interested in sequencing of storage and retrieval

requests within a block for a single straddle carrier, which they identify as part of

planning and scheduling for the transport of unit loads and a generalization of routing

an order picker in a warehouse. They assume a special structure for the block: rows

are separated by aisles and each row has one I/O point at each end. An important

assumption is that the straddle carrier must exit the current row on one of both ends

to travel from one row to the other one, which is very restrictive and time consuming.

They reformulate the problem as an asymmetric Steiner traveling salesman problem

and show that this problem can be solved to optimality by using dynamic program-

ming to link rows together and optimal assignments to solve sub-problems within

each row.

The work of Dell et al. [17] is the first to include storage, retrieval and relocation

requests as well as the assignment of locations to relocation requests for the YCSP

with a single crane. In addition, they schedule housekeeping moves when this is

possible. However, they simplify significantly the problem by decomposing the block

into areas and considering only the best position within each area for possible storage

placement. Moreover, their approach is heuristic-based and considers relocations

sequentially. Finally, it is hard to implement in practice as it requires many manual

input parameters such as the value of the crane staying idle or the value of placing

a container in a stack for each combination of container and stack. For the case of a

single crane, their objective is the total crane travel time and they introduce a three-

step heuristic. The first step solves a single MIP to prescribe the retrieval requests

order and schedule as many storage requests as possible while maximizing idle time

for the next steps. Fixing the first step solution, Step 2 solves MIPs sequentially

for each relocation and storage move to be done. Finally, step 3 uses a rule based

heuristic to schedule housekeeping moves if remaining time is available. They also

develop a similar method for two cranes and compares both systems in a simulation

study based on these methods.

40

Gharehgozli et al. [28] consider a setting similar to the one presented in the pre-

vious section but disregard unproductive requests (or relocations). In addition, each

storage request is associated with a prescribed I/O point (organized in European con-

figuration). They consider a unique crane to carry out storage and retrieval requests

while minimizing crane travel time. They prove the 𝒩𝒫-hardness of this problem

in the case where each retrieval request has a prescribed I/O point. In the rest of

their work, they do not make this latter assumption but assume instead that the I/O

point for a retrieval request can be uniquely determined when the next request is

fixed. Under this assumption, they model the problem as an asymmetric traveling

salesman problem and formulate it with a continuous time integer program (IP) with

exponentially many constraints. Using specific problem properties, they propose a

two-phase solution method to optimally solve the problem: the first phase is a merg-

ing algorithm which patch subtours obtained from the assignment relaxation of the

problem (relaxing the exponential number of constraints). If the first phase did not

find a feasible solution to the original problem, the solution of the first phase is the

starting point of a branch-and-bound algorithm. Gharehgozli et al. [29] show that

this problem can be solved in polynomial time in the case of two I/O points. The

proposed algorithm is based on an improvement of the first phase previously men-

tioned. However, both papers do not consider relocations moves by saying that the

block utilization is low and each container to be retrieved is available on the top of

their stacks, which is not realistic in most ports.

Recently, Yuan and Tang [80] solve a similar problem to the one in Chapter 5 but

in the setting of coil warehouses. They consider storage and retrieval requests as well

as the relocations enforced by retrieval requests. One difference is that the stacking

structure enforces triangle blocking constraints instead of typical stack constraints.

In addition, some simplification assumptions are made. The I/O points configuration

is simpler (European style with one side for storage and one side for retrievals) and

they consider 𝑍 = 2, hence reducing the number of relocations to consider. But most

importantly, their objective is minimizing only crane travel time, hence reducing the

impact and the complexity of the assignment of relocation and storage locations to

41

a feasibility problem. In this setting, Yuan and Tang [80] propose a “time-space

network flow” MIP formulation where they decompose the scheduling period into

stages corresponding to empty/loaded drives of the crane. They also suggest an

exact dynamic programming (DP) approach. Both these methods are impractical

for large-sized problems (problems with (𝑋, 𝑌, 𝑍,𝑁) = (3, 5, 2, 12) cannot be solved

within a 3 minutes’ requirement), so they propose an approximate DP method based

on the exact DP and value function approximation.

Finally, we mention that recent related works have focused their attention on

studying more complex handling systems. Similarly to most works in the single crane

setting, these assume that all requests have a given start and end points and the goal

is to minimize crane travel time or optimize a combination of other objectives such

as truck delays, crane utilization, etc. . . In this setting, Speer and Fischer [63] give a

detailed study of crane cycle times. They review recent papers in twin RMG, double

RMG, and triple RMG scheduling. Finally, they compare these systems using a B&B

approach and show the impact of considering all parts of the crane cycle times. With

respect to assignment of storage locations, Gharehgozli et al. [26] propose a similar

approach as in [28] for twin yard cranes where several open locations are considered for

each storage request. However, only few open locations are considered for each request

and they enforce that each location can be selected by a single storage request, which

is not practical. Park et al. [57] consider storage and relocation location assignment

using heuristics for twin RMG. However, as in [80], they take into account only the

crane travel time to perform the current requests and not future operations. For other

related problems such as simulation based models or inter-block crane allocations, we

refer the reader to [7, 27].

2.3 Other Optimization Problems in Storage Yards

As we mentioned in Chapter 1, there are two other main problems occurring in storage

yards.

42

Pre-marshalling problem. As we mentioned in Section 1.3, other works have

focused on reducing the number of relocations by pre-marshalling, which consists of

re-positioning containers to minimizize future relocations during the retrieval process.

The first paper in this area by Lee and Hsu [46] introduces the problem for a single row

and proposes an integer program using a multi-commodity network flow model as well

as a simple heuristic. A neighborhood-based heuristic is developed in [45]. Caserta

and Voß [11] formulate the problem in a single row using dynamic programming and

apply a local search method called the a corridor method to provide good solutions

efficiently. A tree-based heuristic is proposed in [6]. To test methods, Expósito-

Izquierdo et al. [19] have developed a generator of instances with different degrees

of difficulty. Finally, Tierney and Voß [69] study the robust pre-marshalling problem

which also considers uncertainty in the retrieval times of containers.

Storage problem. Even with pre-marshalling and relocating which help minimize

the number of relocations, stacking can also have a significant impact in that matter

(as shown in Chapter 5). The following papers investigate methods to properly find

locations for incoming containers. The first work from [40] consider the storage of

export containers in a single row of a block, develop a stochastic dynamic program-

ming model and build upon decision trees. Zhang et al. [85] show the validity of the

recursive function of the DP model from [40]. Saurí and Martín [61] develop three

new strategies to stack import containers and propose a model to compute the ex-

pected number of reshuffles based on container arrival times. Casey and Kozan [12]

introduce a mixed-integer programming model to minimize the total amount of time

containers spend in the block. Finally, Yu and Qi [79] consider two models; one for

unloading import containers, the other one to pre-marshal containers.

43

44

Chapter 3

The Container Relocation Problem

3.1 Contributions

This chapter provides two sections dealing with the container relocation problem. In

Section 3.2, we define formally the problem.

The major contribution of the first section is a new binary IP formulation for the

restricted CRP referred to as CRP-I and presented in Section 3.3. This formulation is

novel in several ways. First, CRP-I takes a different modeling approach compared to

previous mathematical programming formulations; it builds upon a binary encoding

introduced in [9] that has never before been used in exact solution methods. We

identify and formulate properties of the encoding as linear equalities or inequalities

(Section 3.3.1) in CRP-I and use structural properties of the optimal solution to en-

hance the tractability of our approach (see Sections 3.3.1 and 3.3.2). The simplicity of

our formulation and its adaptability to other related problems could be a key enabler

of future advances. Finally, we show through extensive computational experiments

on small and medium instances that CRP-I improves upon existing mathematical

programming formulations by decreasing significantly the number of variables and

constraints. In addition, it outperforms most other exact methods on the instances

of [9] (see Section 3.3.3).

In the second section, we study the CRP for large randomly distributed con-

figurations and we show that the ratio between the expected minimum number of

45

relocations and the number of blocking containers (denoted by 𝑏(.)) approaches 1.

While the problem is known to be 𝒩𝒫-hard, this gives strong evidence that the CRP

is “easier” to solve for large instances, and that heuristics can find near-optimal solu-

tions on average. Average case analysis of CRP is fairly new. The only other paper

found in the literature is by Olsen and Gross [56]. They also provide a probabilistic

analysis of the asymptotic CRP when both the number of stacks and tiers grow to

infinity. They show that there exists a polynomial time algorithm that solves this

problem close to optimality with high probability. Our model departs from theirs in

two aspects: (i) We keep the maximum number of tiers a constant whereas in [56]

it also grows. Our assumption is motivated by the fact that the maximum tier is

limited by the crane height, and it cannot grow arbitrarily; and (ii) We assume the

ratio of the number of containers initially in the configuration to the configuration

size (i.e., number of stacks) stays constant (i.e., the configuration is almost full at

the beginning) and is equal to ℎ. On the other hand, in [56], the ratio of the number

of containers initially in the configuration to the configuration size decreases (and it

approaches zero) as the number of stacks grows. In other words, in their model, in

large configurations, the configuration is underutilized, thus simpler to solve.

3.2 Problem Description

The container relocation problem (CRP) usually models one row using a two-dimensional

array of size (𝑇, 𝑆), where 𝑆 is the number of stacks, and 𝑇 is the maximum tier,

i.e., the maximum number of containers in a stack as limited by the height of the

crane. Each element of this array represents a potential slot for a container, and the

slot contains a number only if a container is currently stored in this slot. Stacks are

numbered from left (1) to right (𝑆) and tiers from bottom (1) to top (𝑇). We refer to

this array as a configuration. The common assumptions of the CRP are the following:

A1: The initial configuration has 𝑇 tiers, 𝑆 stacks, and 𝐶 containers. In order

for the problem to always be feasible, we suppose that the triplet (𝑇, 𝑆, 𝐶)

satisfies 0 6 𝐶 6 𝑆𝑇 − (𝑇 − 1). Indeed, 𝑇 − 1 empty slots would be needed

46

to relocate a maximum of 𝑇 − 1 blocking containers above the target container

(see [74, 10]).

A2: A container can be retrieved/relocated only if it is in the topmost tier of

its stack, i.e., no other container is blocking it.

A3: A container can be relocated only if it is blocking the target container.

Container 𝑐 is said to be blocking if there exists container 𝑑 in a lower tier of

the same stack such that 𝑑 < 𝑐. This assumption was suggested in [10], and the

problem under this assumption is commonly referred to as the restricted CRP.

Most studies focus on this restricted version, because it is the current practice in

many yards, and it helps decrease the dimensionality of the problem, while not

losing much optimality (see [58]). As is common practice, we will not mention

the term “restricted” in the rest of this chapter even though we always assume

𝐴3.

A4: The cost of relocating a container from a stack does not depend on the stack

to which the container is relocated. It motivates the objective of minimizing

the number of relocations, since the cost of each relocation can be normalized

to 1. In addition, this allows us in the next chapter to consider the stacks of a

configuration as interchangeable. Note that this assumption is not required for

most results in Chapters 3 and 4, hence our approaches could be easily extended

to the case when Assumption 𝐴4 does not hold.

A5: The retrieval order of containers is known, so that each container can be

labeled from 1 to 𝐶, representing the departure order, i.e., Container 1 is the

first one to be retrieved, and 𝐶 the last one.

The CRP involves finding a sequence of moves to retrieve Containers 1, 2, . . . , 𝐶

(respecting the order) with a minimum number of relocations. Figure 3-1 provides a

simple example of the CRP.

47

2
6 4

3 5 1

Rel 2−−−→ 2 6 4
3 5 1

Rel 4−−−→
4

2 6
3 5 1

Ret 1,2,3,4−−−−−−→ 6
5

Rel 6−−−→
6 5

Figure 3-1: Configuration for the CRP with 3 tiers, 3 stacks, and 6 containers. The
optimal solution performs 3 relocations: relocate the container labeled 2 from Stack
3 to Stack 1 on the top of the container labeled 3; relocate 4 from 3 to 2 on the top
of 6; retrieve 1; retrieve 2; retrieve 3; retrieve 4; relocate 6 from 2 to the empty Stack
1; retrieve 5; finally, retrieve 6.

3.3 A New Binary Formulation Based on a Binary

Encoding of Configurations

This section is organized as follows. Section 3.3.1 introduces some preliminary con-

cepts of the binary encoding and structural properties of the optimal solution. Section

3.3.2 presents formulation CRP-I and suggests improvements for this new formula-

tion, such as a revisited preprocessing step. Section 3.3.3 presents the results of

computational experiments.

3.3.1 Preliminaries

Binary encoding

Most integer program formulations mentioned in Section 2.1 use the matrix represen-

tation of a configuration, i.e., they introduce binary variables of the type 𝑦𝑡𝑠𝑐𝑛 which

indicates if container 𝑐 is in tier 𝑡 of stack 𝑠 before the 𝑛𝑡ℎ move is performed.

Our binary IP models a configuration using an enhanced version of the binary

encoding introduced in [9]. First, Caserta et al. [9] define 𝑆 artificial containers

identified by integers from 𝐶 + 1, . . . , 𝐶 + 𝑆, where artificial container 𝑐 is under all

containers in stack 𝑐−𝐶 (see Figure 3-2). These artificial containers are used to keep

track of which containers are in which stacks. Using these containers, they encode

the classical matrix representation of the configuration into a binary matrix denoted

by 𝐴 of size (𝐶 + 𝑆)× (𝐶 + 𝑆). We consider the same encoding but decrease its size

to (𝐶 + 𝑆)× 𝐶. Rows indexed from 1, . . . , 𝐶 and columns of 𝐴 represent the 𝐶 real

48

containers, while rows indexed from 𝐶 + 1, . . . , 𝐶 + 𝑆 correspond to the 𝑆 artificial

containers. Formally, the binary encoding 𝐴 ∈ {0, 1}(𝐶+𝑆)×𝐶 is defined such that such

that

∀ 𝑐 ∈ {1, . . . , 𝐶 + 𝑆}, 𝑑 ∈ {1, . . . , 𝐶}, 𝐴𝑐,𝑑 =

⎧⎨⎩ 1 if container 𝑐 is below container 𝑑,

0 otherwise.

Figure 3-2: Configuration including artificial containers (example from [9]).

The binary encoding of the configuration in Figure 3-2 is

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

1 1 0 0 1 0 0 0 0

0 0 1 1 0 0 0 1 0

0 0 0 0 0 1 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By using the matrix 𝐴 in this example, we can quickly access valuable information.

49

For instance, consider container 1. The first row indicates that container 1 is below

containers 2 and 5 and the first column shows that container 1 is above artificial

container 10. Because this container represents stack 10 − 9 = 1, it indicates that

container 1 is in the first stack.

Logical constraints of the CRP. We now describe the main logical constraints

of any feasible configuration the CRP. For each of these constraints, we use the

aforementioned binary encoding to formulate it as a linear equality or inequality to be

embedded into our mathematical programming formulation. Given a target container

𝑛 ∈ {1, . . . , 𝐶}, any feasible configuration for the CRP respects the following logical

constraints:

1. Only containers 𝑛, . . . , 𝐶 remain in the configuration. Thus, we only

need to keep track of rows 𝑐 ∈ {𝑛, . . . , 𝐶+𝑆} and columns 𝑑 ∈ {𝑛, . . . , 𝐶} since:

∀ 𝑐 ∈ {1, . . . , 𝑛− 1},

⎧⎨⎩ ∀ 𝑑 ∈ {1, . . . , 𝐶}, 𝐴𝑐,𝑑 = 0,

∀ 𝑑 ∈ {1, . . . , 𝐶 + 𝑆}, 𝐴𝑑,𝑐 = 0.

Therefore, we consider that 𝐴 ∈ {0, 1}(𝐶+𝑆−𝑛+1)×(𝐶−𝑛+1).

2. A container is in one stack, and so is blocking exactly one artificial container:

∀ 𝑐 ∈ {𝑛, . . . , 𝐶},
𝑆∑︁

𝑠=1

𝐴𝐶+𝑠,𝑐 = 1.

3. A container cannot be blocking itself, so the upper diagonal of 𝐴 only

contains zeros:

∀ 𝑐 ∈ {𝑛, . . . , 𝐶}, 𝐴𝑐,𝑐 = 0.

4. Among two distinct containers 𝑐 and 𝑑, only one can be below the

50

other one:

∀𝑐, 𝑑 ∈ {𝑛, . . . , 𝐶}, 𝑐 ̸= 𝑑, 𝐴𝑐,𝑑 + 𝐴𝑑,𝑐 6 1.

5. If two distinct containers 𝑐 and 𝑑 are in the same stack 𝑠, then either

𝑐 is below 𝑑 or 𝑑 is below 𝑐 (𝐴𝑐,𝑑 + 𝐴𝑑,𝑐 > 1). We formulate this as:

∀ 𝑠 ∈ {1, . . . , 𝑆}, 𝑐, 𝑑 ∈ {𝑛, . . . , 𝐶}, 𝑐 ̸= 𝑑, 𝐴𝑐,𝑑 + 𝐴𝑑,𝑐 > 𝐴𝐶+𝑠,𝑐 + 𝐴𝐶+𝑠,𝑑 − 1.

There are three cases to consider:

∙ If 𝑐 and 𝑑 are in stack 𝑠, i.e., 𝐴𝐶+𝑠,𝑐 = 𝐴𝐶+𝑠,𝑑 = 1, then this equation

implies 𝐴𝑐,𝑑 + 𝐴𝑑,𝑐 > 1. Using the previous logical constraint, we have

𝐴𝑐,𝑑 + 𝐴𝑑,𝑐 = 1, which is the relation we are looking for.

∙ If either 𝑐 or 𝑑 is not in stack 𝑠, then this equation implies 𝐴𝑐,𝑑 +𝐴𝑑,𝑐 > 0,

which holds in any case since 𝐴𝑐,𝑑, 𝐴𝑑,𝑐 ∈ {0, 1}.

∙ If 𝑐 and 𝑑 are not in stack 𝑠, then this equation implies 𝐴𝑐,𝑑 + 𝐴𝑑,𝑐 > −1,
which holds in any case since 𝐴𝑐,𝑑, 𝐴𝑑,𝑐 ∈ {0, 1}.

6. If two distinct containers 𝑐 and 𝑑 are in different stacks then neither

𝑐 is below 𝑑 or 𝑑 below 𝑐 (𝐴𝑐,𝑑 = 0 and 𝐴𝑑,𝑐 = 0). This constraint can be

written as:

∀ 𝑠 ∈ {1, . . . , 𝑆}, 𝑐, 𝑑 ∈ {𝑛, . . . , 𝐶}, 𝑐 ̸= 𝑑, 𝐴𝑐,𝑑 + 𝐴𝑑,𝑐 6 2− 𝐴𝐶+𝑠,𝑐 −
𝑆∑︁

𝑟=1
𝑟 ̸=𝑠

𝐴𝐶+𝑟,𝑑.

Similarly to the previous logical constraint, we consider three cases:

∙ If 𝑐 is in stack 𝑠 but not 𝑑, i.e., 𝐴𝐶+𝑠,𝑐 = 1 and
𝑆∑︁

𝑟=1
𝑟 ̸=𝑠

𝐴𝐶+𝑟,𝑑 = 0, then this

equation implies 𝐴𝑐,𝑑 + 𝐴𝑑,𝑐 6 0. Since 𝐴𝑐,𝑑, 𝐴𝑑,𝑐 ∈ {0, 1}, we must have

𝐴𝑐,𝑑 = 0 and 𝐴𝑑,𝑐 = 0 which is the constraint we are looking for.

51

∙ If both or neither 𝑐 and 𝑑 are in stack 𝑠, then this equation implies

𝐴𝑐,𝑑 +𝐴𝑑,𝑐 6 1 (which holds since it is the expression of the fourth logical

constraint of the CRP expressed with the binary encoding).

∙ If 𝑐 is not in stack 𝑠 but 𝑑 is, then this equation implies 𝐴𝑐,𝑑 + 𝐴𝑑,𝑐 6 2

which always holds since 𝐴𝑐,𝑑, 𝐴𝑑,𝑐 ∈ {0, 1}.

7. The number of relocations needed to retrieve the target container is

the number of containers directly blocking it. Since the number of con-

tainers blocking 𝑐 is given by
𝐶∑︁

𝑑=𝑛+1

𝐴𝑐,𝑑. In particular, the number of relocations

to retrieve the target container 𝑛 is
𝐶∑︁

𝑑=𝑛+1

𝐴𝑛,𝑑.

8. The number of containers in each stack is at most 𝑇 . The height of

stack 𝑠 ∈ {1, . . . , 𝑆} is the number of containers blocking artificial container

𝐶 + 𝑠, i.e.,
𝐶∑︁

𝑑=𝑛+1

𝐴𝐶+𝑠,𝑑, so

∀ 𝑠 ∈ {1, . . . , 𝑆},
𝐶∑︁

𝑑=𝑛+1

𝐴𝐶+𝑠,𝑑 6 𝑇.

9. The total number of blocking containers in 𝐴, denoted by 𝑏 (𝐴), is

given by 𝑏 (𝐴) =
𝐶∑︁

𝑑=𝑛+1

𝐵𝑑, where 𝐵𝑑 ∈ {0, 1} is a binary indica-

tor that container 𝑑 is blocking, which can be computed using the binary

encoding simply as follows:

∀ 𝑑 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑐 ∈ {𝑛, . . . , 𝑑− 1}, 𝐵𝑑 > 𝐴𝑐,𝑑.

Note that the total number of blocking containers is not
𝐶−1∑︁
𝑐=𝑛

𝐶∑︁
𝑑=𝑐+1

𝐴𝑐,𝑑, as a

blocking container can be blocking several containers but should count only

once.

52

Apart from offering a simple representation of a given configuration, this binary

encoding presents another great advantage. Tracking the evolution of the configura-

tion with the classical matrix representation is fairly intuitive but requires a significant

number of constraints and seems to be one of the bottlenecks of previous formula-

tions. Our representation allows us to express efficiently the transformation of the

matrix 𝐴 when performing the necessary relocations to retrieve the target container.

Let 𝑛 ∈ {1, . . . , 𝐶 − 1}, we denote 𝐴 ∈ {0, 1}(𝐶+𝑆−𝑛+1)×(𝐶−𝑛+1) (respectively,

𝐴′ ∈ {0, 1}(𝐶+𝑆−𝑛)×(𝐶−𝑛)) the binary encoding of the configuration when 𝑛 is the

target container (respectively, when 𝑛 + 1 is the target container and relocations to

retrieve 𝑛 have been performed). The logical constraints of the CRP enforce that 𝐴′

and 𝐴 should verify the three following rules:

A. The restricted assumption states that if container 𝑐 is not blocking the

target container 𝑛 then 𝑐 cannot be relocated. Therefore all containers

below 𝑐 cannot be relocated either, hence columns 𝑐 in 𝐴 and 𝐴′ should be

identical, i.e., if 𝐴𝑛,𝑐 = 0, then ∀ 𝑑 ∈ {𝑛 + 1, . . . , 𝐶}, 𝐴′
𝑑,𝑐 = 𝐴𝑑,𝑐. This can be

formulated by the following two inequalities:

∀ 𝑐, 𝑑 ∈ {𝑛+ 1, . . . , 𝐶},

⎧⎨⎩ 𝐴′
𝑑,𝑐 6 𝐴𝑑,𝑐 + 𝐴𝑛,𝑐,

𝐴′
𝑑,𝑐 > 𝐴𝑑,𝑐 − 𝐴𝑛,𝑐.

If 𝐴𝑛,𝑐 = 0, both inequalities imply the constraint we are looking for. If 𝐴𝑛,𝑐 = 1,

the inequalities imply 𝐴𝑑,𝑐 − 1 6 𝐴′
𝑑,𝑐 6 𝐴𝑑,𝑐 + 1 which always holds since

𝐴𝑑,𝑐 − 1 6 0, 𝐴𝑑,𝑐 + 1 > 1 and 𝐴′
𝑑,𝑐 ∈ {0, 1}.

B. Any relocated container cannot stay in the same stack, which can be

formulated as:

∀ 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑠 ∈ {1, . . . , 𝑆}, 𝐴𝑛,𝑐 + 𝐴𝐶+𝑠,𝑐 + 𝐴′
𝐶+𝑠,𝑐 6 2.

We consider two cases to justify this formulation:

∙ If container 𝑐 is blocking the target container 𝑛 (hence relocated) and is in

53

stack 𝑠, i.e., 𝐴𝑛,𝑐 = 𝐴𝐶+𝑠,𝑐 = 1, then the inequality implies that 𝐴′
𝐶+𝑠,𝑐 = 0

which is the logical constraint we are aiming for.

∙ If either container 𝑐 is not blocking the target container 𝑛 or is not in stack

𝑠, then the inequality implies that 𝐴′
𝐶+𝑠,𝑐 6 1 which always holds.

C. If two distinct containers 𝑐 and 𝑑 are blocking container 𝑛 (hence

relocated) and 𝑑 is above 𝑐 when 𝑛 is the target container, then

𝑑 cannot remain above 𝑐 (due to the LIFO policy of stacks), i.e., if

𝐴𝑛,𝑐 = 𝐴𝑛,𝑑 = 𝐴𝑐,𝑑 = 1, then 𝐴′
𝑐,𝑑 = 0. This can be expressed as:

∀ 𝑐, 𝑑 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑐 ̸= 𝑑, 𝐴𝑛,𝑐 + 𝐴𝑛,𝑑 + 𝐴𝑐,𝑑 + 𝐴′
𝑐,𝑑 6 3.

Again, we justify this formulation by considering two cases:

∙ if 𝐴𝑛,𝑐 = 𝐴𝑛,𝑑 = 𝐴𝑐,𝑑 = 1, the inequality clearly implies 𝐴′
𝑐,𝑑 = 0.

∙ if either 𝐴𝑛,𝑐 = 0, 𝐴𝑛,𝑑 = 0 or 𝐴𝑐,𝑑 = 0, then the inequality implies that

𝐴′
𝑐,𝑑 6 1 which always holds.

Minimum number of relocations when 𝐶 6 𝑆

We use a result from [24] (see Lemma 5) which we restate below with the notations

of this section.

Lemma 1 ([24]). Consider a configuration with 𝑇 tiers, 𝑆 stacks, and 𝐶 containers

with binary representation 𝐴 ∈ {0, 1}(𝐶+𝑆)×𝐶. Let 𝑏 (𝐴) be the number of blocking

containers in 𝐴 which can be computed as

𝑏 (𝐴) =
𝐶∑︁

𝑑=2

𝐵𝑑 with 𝐵𝑑 ∈ {0, 1} , 𝐵𝑑 > 𝐴𝑐,𝑑, ∀ 𝑐 ∈ {1, . . . , 𝑑− 1}.

If 𝐶 6 𝑆, then the minimum number of relocations to retrieve all containers from 𝐴

is equal to 𝑏 (𝐴).

Lemma 1 states that when the number of containers is fewer than the number of

stacks (𝐶 6 𝑆), the minimum total number of relocations is simply the number of

54

blocking containers. From now on, we suppose that 𝐶 > 𝑆 and we define

𝑁 = 𝐶 − 𝑆 + 1 > 1.

Let us explain the use of Lemma 1. Let 𝐴(1) (respectively, 𝐴(𝑁)) be the binary encod-

ing of an initial configuration (respectively, the configuration after 𝑁 − 1 retrievals).

We define 𝑟
(︀
𝐴(1), 𝐴(𝑁)

)︀
to be the minimum number of relocations to reach 𝐴(𝑁) from

𝐴(1). By definition 𝐴(𝑁) ∈ {0, 1}(𝐶′+𝑆)×𝐶′ , where 𝐶 ′ = 𝐶 − 𝑁 + 1 = 𝑆 6 𝑆. Hence

we can apply Lemma 1 to 𝐴(𝑁) and the minimum number of relocations to retrieve

all containers from 𝐴(𝑁) is equal to 𝑏
(︀
𝐴(𝑁)

)︀
. Therefore, the minimum number of

relocations to retrieve all containers from 𝐴(1) is 𝑟
(︀
𝐴(1), 𝐴(𝑁)

)︀
+ 𝑏

(︀
𝐴(𝑁)

)︀
. Usually,

methods track all relocations until there are no containers left in the configuration.

Lemma 1 allows us to restrict our focus on the first 𝑁 − 1 retrievals as the problem

becomes “trivial” when there are only 𝑆 containers left.

3.3.2 New Binary IP Formulation

Using Section 3.3.1, we can now present our novel formulation that we denote by

CRP-I. We suppose that we are given as inputs a feasible triplet (𝑇, 𝑆, 𝐶) and 𝐴(1)

the binary encoding of the initial configuration (which verify all the properties of

the binary encoding). CRP-I minimizes the total number of relocations to retrieve

all containers from a given initial configuration while enforcing all the previously

mentioned logical constraints of the CRP. To do so, CRP-I uses two kinds of variables,

∀ 𝑛 ∈ {1, . . . , 𝑁}, 𝑐 ∈ {𝑛, . . . , 𝐶 + 𝑆}, 𝑑 ∈ {𝑛, . . . , 𝐶},

𝑎𝑛,𝑐,𝑑 =

⎧⎨⎩ 1 if container 𝑐 is below container 𝑑 when 𝑛 is the target container,

0 otherwise,

55

and

∀ 𝑑 ∈ {𝑁 + 1, . . . , 𝐶},

𝑏𝑑 =

⎧⎨⎩ 1 if container 𝑑 is blocking after 𝑁 − 1 retrievals,

0 otherwise.

Binary variables 𝑎 are used to keep track of the binary encoding of the configura-

tions and compute the number of relocations incurred for the first 𝑁 − 1 retrievals.

Note that we use the first logical constraint of the CRP expressed with the binary

encoding to limit the number of variables as 𝑛 increases. Binary variables 𝑏 are used

to compute the number of blocking containers in the configuration after the 𝑁 − 1

retrievals. The number of variables is of the order of 𝐶3, where the exact number is

𝑆 − 1 +
𝑁−1∑︁
𝑛=1

(𝐶 + 𝑆 − 𝑛+ 1)× (𝐶 − 𝑛+ 1) =
1

3
𝐶3 +

1 + 𝑆

2
𝐶2 +

1 + 3𝑆

6
𝐶 − 6− 5𝑆 − 6𝑆2 + 5𝑆3

6
.

The objective and constraints of CRP-I are presented below

𝑀𝑖𝑛

(︃
𝑁−1∑︁
𝑛=1

𝐶∑︁
𝑑=𝑛+1

𝑎𝑛,𝑛,𝑑 +
𝐶∑︁

𝑑=𝑁+1

𝑏𝑑

)︃

s.t.

𝑎1,𝑐,𝑑 = 𝐴
(1)
𝑐,𝑑, ∀ 𝑐 ∈ {1, . . . , 𝐶 + 𝑆}, 𝑑 ∈ {1, . . . , 𝐶} (3.1)

𝑆∑︁
𝑠=1

𝑎𝑛,𝐶+𝑠,𝑐 = 1, ∀ 𝑛 ∈ {2, . . . , 𝑁}, 𝑐 ∈ {𝑛, . . . , 𝐶} (3.2)

𝑎𝑛,𝑐,𝑐 = 0, ∀ 𝑛 ∈ {2, . . . , 𝑁}, 𝑐 ∈ {𝑛, . . . , 𝐶} (3.3)

𝑎𝑛,𝑐,𝑑 + 𝑎𝑛,𝑑,𝑐 6 1, ∀ 𝑛 ∈ {2, . . . , 𝑁}, 𝑐 ∈ {𝑛, . . . , 𝐶}, 𝑑 ∈ {𝑛, . . . , 𝐶} ∖ {𝑐} (3.4)

56

𝑎𝑛,𝑐,𝑑 + 𝑎𝑛,𝑑,𝑐 > 𝑎𝑛,𝐶+𝑠,𝑐 + 𝑎𝑛,𝐶+𝑠,𝑑 − 1,

∀ 𝑛 ∈ {2, . . . , 𝑁}, 𝑠 ∈ {1, . . . , 𝑆}, 𝑐 ∈ {𝑛, . . . , 𝐶}, 𝑑 ∈ {𝑛, . . . , 𝐶} ∖ {𝑐}
(3.5)

𝑎𝑛,𝑐,𝑑 + 𝑎𝑛,𝑑,𝑐 6 2− 𝑎𝑛,𝐶+𝑠,𝑐 −
𝑆∑︁

𝑟=1
𝑟 ̸=𝑠

𝑎𝑛,𝐶+𝑟,𝑑,

∀ 𝑛 ∈ {2, . . . , 𝑁}, 𝑠 ∈ {1, . . . , 𝑆}, 𝑐 ∈ {𝑛, . . . , 𝐶}, 𝑑 ∈ {𝑛, . . . , 𝐶} ∖ {𝑐}

(3.6)

𝐶∑︁
𝑑=𝑛

𝑎𝑛,𝐶+𝑠,𝑑 6 𝑇, ∀ 𝑛 ∈ {2, . . . , 𝑁}, 𝑠 ∈ {1, . . . , 𝑆} (3.7)

𝑏𝑑 > 𝑎𝑁,𝑐,𝑑, ∀ 𝑑 ∈ {𝑁 + 1, . . . , 𝐶}, 𝑐 ∈ {𝑁, . . . , 𝑑− 1} (3.8)

𝑎𝑛+1,𝑑,𝑐 6 𝑎𝑛,𝑑,𝑐 + 𝑎𝑛,𝑛,𝑐,

∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑑 ∈ {𝑛+ 1, . . . , 𝐶 + 𝑆} ∖ {𝑐}
(3.9)

𝑎𝑛+1,𝑑,𝑐 > 𝑎𝑛,𝑑,𝑐 − 𝑎𝑛,𝑛,𝑐,
∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑑 ∈ {𝑛+ 1, . . . , 𝐶 + 𝑆} ∖ {𝑐}

(3.10)

𝑎𝑛,𝑛,𝑐 + 𝑎𝑛,𝐶+𝑠,𝑐 + 𝑎𝑛+1,𝐶+𝑠,𝑐 6 2,

∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑠 ∈ {1, . . . , 𝑆}
(3.11)

𝑎𝑛,𝑛,𝑐 + 𝑎𝑛,𝑛,𝑑 + 𝑎𝑛,𝑐,𝑑 + 𝑎𝑛+1,𝑐,𝑑 6 3,

∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑑 ∈ {𝑛+ 1, . . . , 𝐶} ∖ {𝑐}.
(3.12)

57

𝑎𝑛,𝑐,𝑑 ∈ {0, 1}, ∀ 𝑛 ∈ {1, . . . , 𝑁}, 𝑐 ∈ {𝑛, . . . , 𝐶 + 𝑆}, 𝑑 ∈ {𝑛, . . . , 𝐶} (3.13)

𝑏𝑑 ∈ {0, 1}, ∀ 𝑑 ∈ {𝑁 + 1, . . . , 𝐶} (3.14)

The objective function of CRP-I minimizes the total number of relocations. As

suggested in Section 3.3.1, the objective function has two main components. The

first term counts the number of relocations incurred for the first 𝑁 − 1 retrievals, i.e.,

𝑟
(︀
𝐴(1), 𝐴(𝑁)

)︀
. When the target container is 𝑛 ∈ {1, . . . , 𝑁 − 1}, the seventh logical

constraint of the CRP states how to compute the number of containers blocking

the target container 𝑛 using the binary encoding, hence the number of relocations

to retrieve 𝑛. The second term counts the number of blocking containers in the

configuration after the first 𝑁 − 1 retrievals, i.e., 𝑏
(︀
𝐴(𝑁)

)︀
, as suggested by Lemma 1.

Constraint (3.1) initializes the variable 𝑎 for 𝑛 = 1 with the input binary encoding

𝐴(1). Constraints (3.2), (3.3), (3.4), (3.5), (3.6) and (3.7) correspond to the second,

third, fourth, fifth, sixth and eighth logical constraints of the CRP formulated us-

ing the binary encoding. Constraint (3.8) enforces the relation between variables 𝑏

and 𝑎, which is explained in the ninth logical constraint of the CRP. The four next

constraints enforce the rules to update the binary encoding between retrievals. Con-

straints (3.9) and (3.10) correspond to rule A, Constraint (3.11) corresponds to rule

B and Constraint (3.12) corresponds to rule C. Finally, constraints (3.13) and (3.14)

ensure that variables are binary variables.

We point out that variables of CRP-I only keep track of the configuration states

through the binary encoding, and it could seem that no decisions are made. Actu-

ally, decisions are implicitly taken when a state of configuration is chosen after each

retrieval and the cost of these decisions (i.e., the number of relocations) can easily be

induced. Let 𝑛 ∈ {1, . . . , 𝑁} and 𝑐 ∈ {𝑛, . . . , 𝐶}, then we define:

𝑠𝑛(𝑐) =
𝑆∑︁

𝑠=1

𝑠𝑎𝑛,𝐶+𝑠,𝑐 and 𝑡𝑛(𝑐) =
𝐶+𝑆∑︁
𝑑=𝑛

𝑎𝑛,𝑑,𝑐, (3.15)

58

such that 𝑠𝑛(𝑐) (respectively 𝑡𝑛(𝑐)) is the stack (respectively tier) at which container

𝑐 is when container 𝑛 is the target container. Using these notations, any feasible 𝑎

for CRP-I defines a feasible sequence of configurations starting with 𝐴(1) and ending

with a configuration with 𝑆 containers. Conversely, we have derived the constraints

of CRP-I from logical constraints of the CRP, then the binary encoding of a feasible

sequence of configurations starting with 𝐴(1) and ending with a configuration with 𝑆

containers is feasible for CRP-I.

Finally, we believe that this modeling approach can be easily generalized to dif-

ferent objective functions. We provide three extensions in Appendix A.1.

Minor improvements

We suggest here some features that we use together with CRP-I when calling com-

mercial solvers. First, since the optimal objective value is an integer, we can set

the absolute gap of the optimization solver to 1 − 𝜖 for 𝜖 > 0. Indeed, if we can

guarantee that the best feasible solution found so far with objective 𝑧𝑏𝑒𝑠𝑡 is such that

𝑧𝑏𝑒𝑠𝑡 − 𝑧𝑜𝑝𝑡 6 1− 𝜖, then by integrality of 𝑧𝑏𝑒𝑠𝑡 and 𝑧𝑜𝑝𝑡, this ensures that 𝑧𝑏𝑒𝑠𝑡 = 𝑧𝑜𝑝𝑡.

Second, Caserta et al. [10] suggest a Minmax heuristic which is commonly used as a

good upper bound. We include this solution as a first incumbent to the solver.

The flexibility of CRP-I allows us to take into account some existing improvements

suggested in the literature to enhance the efficiency of integer programs for the CRP.

For instance, we can simply adapt one of the preprocessing steps suggested by Zehend-

ner et al. [81]. For each container 𝑐 ∈ {1, . . . , 𝐶}, one can easily compute the first

target container 𝜋𝑐 ∈ {1, . . . , 𝑐} for which 𝑐 is moved. Therefore, all containers below

𝑐, including 𝑐, stay in their initial position until container 𝜋𝑐 is the target container.

Thus the 𝑐𝑡ℎ column of the binary encoding does not change until 𝜋𝑐 is the current

target container, i.e.,

𝑎𝑛,𝑑,𝑐 = 𝐴
(1)
𝑑,𝑐 ∀ 𝑛 ∈ {1, . . . ,min{𝜋𝑐 − 1, 𝑁}}, 𝑐 ∈ {𝑛, . . . , 𝐶}, 𝑑 ∈ {𝑛, . . . , 𝐶 + 𝑆}.

Although we do not use it in our experiments, we mention here that we can also easily

59

adapt constraint (𝐵) from [81] as

𝐶∑︁
𝑑=𝑛+1

𝑎𝑛,𝑛,𝑑 6 𝑈𝐵𝑛, ∀ 𝑛 ∈ {1, . . . , 𝑁 − 1},

where the computation of 𝑈𝐵𝑛 is detailed in [81].

3.3.3 Computational Experiments

As mentioned in Section 3.1, we test our binary model on the instances introduced

in [9]. These instances are defined by two values (𝑇 ′, 𝑆), where 𝑆 is the number of

stacks and 𝑇 ′ the initial number of containers per stack (identical for all stacks). It

is assumed that the maximum number of tiers 𝑇 is taken to be 𝑇 = 𝑇 ′ + 2. Each

class associated with a pair (𝑇 ′, 𝑆) contains 40 instances, each representing different

initial configurations with 𝐶 = 𝑆 × 𝑇 ′ containers.

Experiments are carried out on a Dell C6300 with an Intel E5-2690 v4 2.6 GHz

processor, 4 CPUs, 8.00 GB of RAM and the programming language is Julia 0.5.0.

We use Gurobi 7.0.1. to solve the binary programming model CRP-I enhanced by the

gap (with 𝜖 = 0.01), and the incumbent and preprocessing improvements described in

the previous section. We set a time limit of 3600 seconds per instance for the solver.

We also define the memory limit to be when the product of the number of variables

with the number of constraints is greater than 8 × 1010. This definition is different

than in [81], but it has the merit of not depending on the computer system, allowing

for an easier comparison with future studies. All instances and scripts are available

at https://github.com/vgalle/binaryIP_CRP. We present our results as in [81] to

ease the comparison with this state-of-the art integer programming solution. Finally,

we also compare our results with the integer program and the branch and bound

algorithms presented in [18, 20, 42, 66] on the first 5 instances of several classes, as

these are the only instances for which they provide results in their papers.

60

https://github.com/vgalle/binaryIP_CRP

(𝑇 ′, 𝑆) 𝐶 Avg. LB Avg. UB Avg. gap Nb. trivial
(3, 3) 9 4.725 5.075 0.35 27
(3, 4) 12 5.85 6.30 0.45 26
(3, 5) 15 6.75 7.05 0.30 28
(3, 6) 18 8.275 8.45 0.175 36
(3, 7) 21 9.10 9.325 0.225 33
(3, 8) 24 10.45 10.725 0.275 32

(4, 4) 16 9.40 10.975 1.575 8
(4, 5) 20 12.15 13.55 1.40 11
(4, 6) 24 13.225 14.675 1.45 11
(4, 7) 28 15.20 16.90 1.70 9

(5, 4) 20 13.575 16.75 3.175 4
(5, 5) 25 17.00 21.225 4.225 1
(5, 6) 30 20.05 24.25 4.20 2
(5, 7) 35 22.425 26.325 3.90 5
(5, 8) 40 25.60 29.60 4.00 4
(5, 9) 45 28.525 32.35 3.825 3
(5, 10) 50 31.35 35.50 4.15 2

(6, 6) 36 26.95 35.90 8.95 0
(6, 10) 60 41.525 49.85 8.325 2
(10, 6) 60 56.60 101.25 44.65 0
(10, 10) 100 84.125 139.275 55.15 0

Table 3.1: Difficulty of instances from [9].

Difficulty of instances

Table 3.1 shows several key values indicating the difficulty of the instances. It displays

the problem class (𝑇 ′, 𝑆), the number of containers in each class 𝐶, the average lower

bound from [87] (Avg. LB), the average upper bound from [10] (Avg. UB) and the

average gap between these two values (Avg. gap). Most importantly, it gives how

many instances can be considered as trivial (Nb. trivial), i.e., when the upper bound

is equal to the lower bound, hence the integer program is not required to solve these

instances. We mention that Table 3.1 confirms exactly the results from [81]. We

mainly provide this table for the sake of clarity associated with the next results.

61

Results of CRP-I and comparison with BRP-II-A

We provide the results of CRP-I aggregated by class of instances in Table 3.2. This

table recalls the number of trivial instances per class (Nb. trivial) and displays the

number of instances that were solved to optimality (Nb. solved non-trivial), the

average and standard deviation of CPU times in seconds (Avg. CPU time and Std.

CPU time). Finally, it differentiates instances not solved optimally either due to

time or memory limit. We provide in parenthesis the results from [81] to make a

comparison both in terms of the number of instances solved optimally as well as CPU

times.

(𝑇 ′, 𝑆)
Nb. Nb. solved Avg. CPU Std. CPU Nb. time Nb. memory

trivial non-trivial time (sec.) time (sec.) limit limit
(3, 3) 27 13 (13) 0.1 (0.1) 0.1 (0.0) 0 (0) 0 (0)
(3, 4) 26 14 (14) 0.1 (0.3) 0.1 (0.3) 0 (0) 0 (0)
(3, 5) 28 12 (12) 0.1 (0.8) 0.1 (0.7) 0 (0) 0 (0)
(3, 6) 36 4 (4) 0.4 (4.2) 0.2 (3.0) 0 (0) 0 (0)
(3, 7) 33 7 (7) 0.6 (5.8) 0.4 (3.4) 0 (0) 0 (0)
(3, 8) 32 8 (8) 1.3 (11.2) 0.7 (6.0) 0 (0) 0 (0)

(4, 4) 8 32 (32) 0.1 (1.2) 0.1 (0.7) 0 (0) 0 (0)
(4, 5) 11 29 (29) 0.5 (5.8) 0.3 (3.7) 0 (0) 0 (0)
(4, 6) 11 29 (29) 2.3 (16.1) 5.4 (28.3) 0 (0) 0 (0)
(4, 7) 9 31 (31) 6.4 (90.1) 12 (197.8) 0 (0) 0 (0)

(5, 4) 4 36 (36) 1.8 (19.9) 4.5 (38.3) 0 (0) 0 (0)
(5, 5) 1 39 (38) 41.9 (369.3) 177.6 (798.9) 0 (1) 0 (0)
(5, 6) 2 37 (31) 68.0 (524.3) 166.2 (719.4) 1 (6) 0 (0)
(5, 7) 5 31 (19) 170.9 (487.7) 367.4 (609.8) 4 (2) 0 (14)
(5, 8) 4 29 (5) 590.2 (749.4) 820.6 (535.0) 7 (0) 0 (31)
(5, 9) 3 23 (2) 658.2 (126.1) 799.1 (79.5) 14 (0) 0 (35)
(5, 10) 2 20 (0) 1111.0 (n.a.) 1056.7 (n.a.) 18 (0) 0 (38)

(6, 6) 0 19 (7) 441.7 (1466.5) 723.8 (1092.9) 21 (10) 0 (23)
(6, 10) 2 0 (0) n.a. (n.a.) n.a. (n.a.) 0 (0) 38 (38)
(10, 6) 0 0 (0) n.a. (n.a.) n.a. (n.a.) 0 (0) 40 (40)
(10, 10) 0 0 (0) n.a. (n.a.) n.a. (n.a.) 0 (0) 40 (40)

Table 3.2: Computational results of CRP-I on non-trivial instances (in parenthesis
the results from [81]). In bold, the classes for which CRP-I solves more instances
optimally than BRP-II-A.

Our experiment shows that we can now solve almost all instances with sizes lower

than (5, 7) within minutes on average. We can also solve a majority of instances for

classes (5, 8 to 10) and some in (6, 6). However, all the other classes reach the memory

limit threshold. In terms of number of instances solved optimally, our method clearly

outperforms BRP-II-A, specially for the classes (5, 7 to 10) and (6, 6). The average

62

CPU time and its variability are also dramatically improved by CRP-I compared to

BRP-II-A. Note that there are much fewer instances solved by BRP-II-A than CRP-I

for classes (5, 8) and (5, 9), hence explaining the lower variability of CPU time of

BRP-II-A for these classes.

(𝑇 ′, 𝑆)
Nb. binary Avg. nb. Avg. node Difference of LP relax.
variables constraints iterations nb. blocking LB

(3, 3) 408 (546.8) 2,326.4 0 1.10 -0.14
(3, 4) 927 (2,140.1) 6,730.7 0 0.86 -0.42
(3, 5) 1,764 (5,236.0) 15,389.8 0 0.74 -0.68
(3, 6) 2,995 (16,170.8) 30,303.2 0 0.70 -0.80
(3, 7) 4,696 (25,576.0) 54,364.3 0 0.79 -0.93
(3, 8) 6,943 (37,248.0) 90,340.4 0 0.50 -0.63

(4, 4) 2,005 (5,755.5) 16,383.5 0 1.36 -0.83
(4, 5) 3,844 (19,380.2) 37,413.0 0 1.06 -0.94
(4, 6) 6,560 (32,718.8) 74,130.1 3.5 1.03 -1.32
(4, 7) 10,324 (72,055.6) 132,182.1 0 0.82 -1.06

(5, 4) 3,675 (15,161.6) 32,361.9 22.8 1.87 -1.00
(5, 5) 7,074 (42,530.7) 73,823.8 420.7 2.09 -1.70
(5, 6) 12,105 (112,706.7) 145421.6 77.5 1.67 -1.70
(5, 7) 19,088 (198,902.1) 260,202.2 25.6 1.72 -2.08
(5, 8) 28,343 (352,122.7) 431,277.6 18.2 1.73 -2.34
(5, 9) 40,190 (583,790.6) 675,140.5 10.7 1.95 -3.65
(5, 10) 54,949 (884,834.6) 1,009,631.0 12.2 2.19 -4.86

(6, 6) 20,062 (243,620.9) 253,368.7 466.4 5.62 -5.96
(6, 10) 91,384 (2,058,673.2) 1,750,000.0 n.a. n.a. n.a.

(10, 6) 84,650 (-) 1,170,272.8 n.a. n.a. n.a.
(10, 10) 388,124 (-) 8,090,000.0 n.a. n.a. n.a.

Table 3.3: Efficiency indicators of CRP-I on non-trivial instances (in paranthesis the
number of variables from [81] with preprocessing).

Table 3.3 presents alternative indicators which only depend on the binary formu-

lation properties and not on the computer features. Compared to those in Table 3.2,

these indicators provide a more unbiased estimation of the performance of CRP-I. We

provide the number of binary variables (Nb. binary variables), the average number

of constraints (Avg. nb. constraints) over all 40 instances of each class. Note that

the number of binary variables is constant in a given class of instances. In addition,

we show the average number of node iterations done by the solver (Avg. node itera-

63

tions) for instances solved optimally. We can observe that the number of variables is

very reasonable for all classes (expect (10, 10)) and that CRP-I decreases this number

substantially compared to BRP-II-A (by a factor varying from 1.34 to 22), even with

their proposed preprocessing step. This can partly explain the performances reported

in Table 3.2. However, the bottleneck of our model seems to be the substantial growth

of the number of constraints as instance size grows. Future work could be to study a

row-generation approach for the CRP-I model. Finally, the last two columns of Table

3.3 provide the difference between the LP relaxation objective function and two other

lower bounds (the number of blocking containers and the lower bound from [87]). We

notice that the LP relaxation is on average always between these two lower bounds,

which leads to say that the LP relaxation is quite good but may be further improved

by adding efficient cuts which could be using lower bounds properties.

Efficiency of the upper bound and hardness of the CRP

(𝑇 ′, 𝑆) Nb. solved non-trivial Avg. Opt. Avg. Gap UB-Opt. Nb. UB optimal
(3, 3) 13 6.77 0.23 10
(3, 4) 14 7.5 0.36 10
(3, 5) 12 8.75 0.08 11
(3, 6) 4 11.5 0.50 2
(3, 7) 7 11.71 0.29 5
(3, 8) 8 12.25 0.38 5

(4, 4) 32 10.69 0.97 12
(4, 5) 29 13.59 0.83 14
(4, 6) 29 14.55 0.90 15
(4, 7) 31 16.9 1.00 12

(5, 4) 36 15.61 1.47 9
(5, 5) 39 18.79 2.44 7
(5, 6) 37 22.24 2.22 5
(5, 7) 31 24.23 2.13 4
(5, 8) 29 27.48 1.86 9
(5, 9) 23 29.52 2.09 5
(5, 10) 20 32.00 1.8 5

(6, 6) 19 28.05 3.58 1

Table 3.4: Efficiency of the upper bound and hardness of the CRP on non-trivial
instances.

64

Table 3.4 provides the number of non-trivial instances solved optimally by CRP-

I and for these instances,the average optimal number of relocations (Avg. Opt.),

the average gap between the upper bound and the optimal solution (Avg. Gap UB-

Opt) and the number of instances for which the upper bound is optimal (Nb. UB

optimal). These key factors can help estimate the impact of using an upper bound as

first incumbent. It can also help to get insight whether the hard part of the CRP is

to find an optimal solution or to prove optimality of a given optimal solution. We can

see that for instances with 𝑇 ′ 6 4, a majority of instances are solved optimally by the

upper bound and the average gap is always less than 1. Table 3.2 shows CRP-I solves

all these instances optimally within a few seconds. This suggests that providing the

upper bound as an incumbent is beneficial for the integer program and the proof of

optimality of this incumbent seems to be relatively fast. For larger classes, there are

many fewer instances for which the upper bound is optimal, hence the solution time

for these instances increases dramatically. This suggests that the hard part for larger

problems is to be find an optimal solution. Once found, CRP-I seems to be quite

efficient in proving the optimality of the solution.

Comparison of CRP-I with solutions from [20, 18, 42, 66]

We present Table 3.5 as in [20, 18] to ease the comparison between our solution and

theirs. First, the optimal values are all identical, confirming the accuracy of our

model. Secondly, CRP-I clearly outperforms the corrected integer programs BRP-II*

and BRP2ci in terms of computation time. In Table 3.6, we compare BRP2ci and

CRP-I on three other problem classes provided in [18].

Most importantly, we compare CRP-I with the branch-and-bound approach in

[20]. For all instances in classes other than (4, 6), even though the branch-and-bound

approach is faster, CRP-I still solves instances in less than a second, hence we claim

that the difference between these two solution times is minor. However for the hardest

problem class in this table, i.e., (4, 6), CRP-I solves all instances in less than 10

seconds, while branch-and-bound requires more than 17 seconds to solve one instance.

Expósito-Izquierdo et al. [20] mention that the exact branch-and-bound approach

65

(𝑇 ′, 𝑆) Instance Optimal time (sec.)
CRP-I BRP-II* B&B BRP2ci CC15&PDB0

(3, 3) 1 6 * 1.18 0.007 0.11
2 5 * 1.39 0.007 0.11
3 2 * 1.00 0.006 0.08
4 4 * 1.09 0.007 0.09
5 1 * 1.06 0.007 0.06

Avg 3.6 * 3.6 0.007 0.09

(3, 4) 1 5 0.014 4.76 0.008 0.28
2 3 * 18.39 0.007 0.22
3 7 * 11.71 0.006 0.34
4 5 * 16.06 0.007 0.26
5 6 * 18.04 0.007 0.27

Avg 5.2 0.014 13.79 0.008 0.274

(3, 5) 1 6 * 83.09 0.010 0.72
2 7 * 75.95 0.007 1.2
3 8 * 100.71 0.013 0.91
4 6 * 95.31 0.008 0.8
5 9 0.097 65.32 0.026 1.59

Avg 7.2 0.097 84.11 0.013 1.044

(3, 6) 1 11 0.397 124.11 0.086 5.35 5.26
2 7 * 113.29 0.008 1.59 0
3 11 * 89.06 0.019 3.09 2.01
4 7 * 93.12 0.016 1.78 0.03
5 4 * 96.50 0.007 1.23 0

Avg 8.0 0.397 103.22 0.027 2.608 1.46

(3, 7) 1 7 * 182.14 0.009 2.89 0.08
2 10 * 284.29 0.011 3.29 0.6
3 9 * 119.20 0.011 3.34 1.98
4 8 * 472.32 0.010 3.35 0.3
5 12 * 277.97 0.038 7.97 191.6

Avg 9.2 * 267.26 0.016 4.168 38.91

(3, 8) 1 8 0.508 84.66 0.021 7.25 0.75
2 10 * 14403.33 0.055 9.31 8.65
3 9 * 8298.85 0.012 6.57 0.66
4 10 * 250.33 0.013 11.03 7.24
5 13 * 6384.65 0.022 11.06 13.53

Avg 10.0 0.508 5884.36 0.025 9.044 6.166

(4, 4) 1 10 * 71.96 0.017 1.25 0.08
2 10 0.036 228.91 0.025 0.95 0
3 10 0.077 71.99 0.009 1.56 0.03
4 7 * 65.25 0.008 0.78 0
5 9 0.081 89.36 0.013 1.15 0.04

Avg 9.2 0.065 105.49 0.014 1.138 0.03

(4, 5) 1 16 0.543 3544.86 0.540 61.62 21.08
2 10 0.229 326.54 0.043 5.27 0.15
3 13 0.261 1023.98 0.018 8.28 2.6
4 8 * 119.86 0.014 2.96 0.02
5 16 0.763 2656.67 0.579 81.26 93.4

Avg 12.6 0.449 1534.38 0.239 31.878 23.45

(4, 6) 1 17 8.679 4077.08 17.476 n.a. 64.73
2 8 0.541 18985.03 0.030 5.23 0.02
3 13 * 1706.75 0.069 12.86 31.9
4 14 0.828 2376.86 0.315 23.4 59.53
5 15 0.641 8564.20 0.076 45.22 107.15

Avg 13.4 2.672 7141.98 3.593 n.a. 31.24

Table 3.5: Comparison between our formulation CRP-I, BRP-II* and branch-and-bound (B&B)
from [20], BRP2ci from [18] and CC15&PDB0 from [42] on a subset of instances from [9]. Time
limits (BRP-II*: 1 day; BRP2ci: 900 seconds) and instances not solved optimally are noted by n.a..
Times are given in seconds. * indicates that the instance is trivial.

66

(𝑇 ′, 𝑆) Instance Optimal time (sec.)
CRP-I BRP2ci

(4, 7) 1 17 2.995 44.1
2 18 1.245 20.47
3 13 * 18.95
4 16 2.31 49.78
5 16 2.16 85.75

Avg 16 2.178 43.81

(5, 4) 1 15 0.295 118.2
2 19 1.06 185.36
3 15 0.32 5.9
4 12 0.17 5.01
5 17 0.652 118.16

Avg 15.6 0.499 86.526

(5, 5) 1 22 6.079 n.a.
2 16 0.422 22.06
3 22 25.542 n.a.
4 21 5.538 n.a.
5 16 0.837 46.3

Avg 19.4 7.684 n.a.

Table 3.6: Further comparison between our formulation CRP-I and BRP2ci from [18] on an
extended subset of instances from [9]. Time limit (BRP2ci: 900 seconds) and instances not solved
optimally are noted by n.a. * indicates that the instance is trivial.

could start to be intractable for this problem size and propose faster heuristic solutions

by varying a parameter in their approach.

We also tested the B&B solution from [66] on instances of Tables 3.5 and 3.6,

using the code in C provided on the author’s website. The bounds used in [66] seem

to be tighter, allowing their algorithm to solve all instances in less than 0.1 seconds. A

good future direction for our work could be the incorporation of these bounds into our

approach. While the B&B approach in [66] is faster, our approach is sufficiently fast

for all cases tested in Tables 3.5 and 3.6 (required less than .5 minutes) to allow for

real-time decision making. Moreover, one advantage of integer programs (including

our method) is that its efficiency relies significantly on the performance of integer

programming solvers. Thus, in light of their recent dramatic improvement, if solvers

continue to rapidly improve in the coming years, our method will also improve its

computational tractability with no change required.

67

3.4 An Average-Case Asymptotic Analysis of the CRP

In this section, for the sake of the analysis, we consider that we are given a config-

uration with 𝑆 stacks, 𝑇 tiers; Initially 𝐶 containers are stored in the configuration

with exactly ℎ containers in each stack, where ℎ 6 𝑇 − 1, so 𝐶 = ℎ× 𝑆. We denote

such a configuration 𝐵ℎ,𝑆. For configuration 𝐵ℎ,𝑆, we denote the minimum number

of relocations by 𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆). We focus on an average case analysis when the number

of stacks grows asymptotically. In our model, since 𝐶 = ℎ × 𝑆, when 𝑆 grows to

infinity, 𝐶 also grows to infinity.

Before stating the main result in Section 3.4.2, we first provide four main ingredi-

ents in the next section: the notion of an uniformly random configuration, the simple

lower bound 𝑏(.) on the minimum number of relocations introduced in [38], a heuris-

tic developped in [10] that performs well on average in large configurations, and the

notion of “special” stacks.

3.4.1 Background

Uniformly random configuration

We view a configuration as an array of 𝑇 × 𝑆 slots (see Figure 3-1). The slots are

numbered from bottom to top, and left to right from 1 to 𝑇 × 𝑆. The goal is to

generate a configuration 𝐵ℎ,𝑆 with uniform probability, meaning each container is

equally likely to be anywhere in the configuration, with the restriction that there

are ℎ containers per stack. We first generate a uniformly random permutation of

{1, . . . , ℎ × 𝑆} called 𝜋. Then we assign a slot for each container with the following

relation: 𝐵ℎ,𝑆(𝑖, 𝑗) = 𝜋(ℎ× (𝑗− 1)+ 𝑖) for 𝑖 6 ℎ and 𝐵ℎ,𝑆(𝑖, 𝑗) = 0 for 𝑖 > ℎ+1. One

can see that each configuration is generated with probability 1/𝐶!. There is a one to

one mapping between configurations with 𝑆 stacks and permutations of {1, . . . , ℎ×𝑆},
denoted by 𝒮ℎ×𝑆. Finally, we denote the expectation of random variable 𝑋 over this

uniform distribution by Eℎ,𝑆[𝑋].

68

The counting lower bound b(.)

This bound was introduced in [38] (also introduced in Section 3.3.1) and it is based

on the following simple observation. In the initial configuration, if a container is

blocking, then it must be relocated at least once. Thus we count the number of

blocking containers in 𝐵ℎ,𝑆, we denote it as 𝑏(𝐵ℎ,𝑆), and we have 𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆) > 𝑏(𝐵ℎ,𝑆).

Note that if a container blocks more than one container, it is counted only once. In

Lemma 2, we give an explicit formula for the expectation of 𝑏(.) under the uniform

distribution.

Lemma 2. Let 𝑆, ℎ ∈ N and 𝑏(.) be the counting lower bound defined above, we have

Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)] = 𝛼ℎ × 𝑆 (3.16)

where 𝛼ℎ = ℎ−∑︀ℎ
𝑖=1 1/𝑖 is the expected number of blocking containers in one stack.

Observation 1. Note that 𝛼ℎ only depends on ℎ.

Proof. Let 𝑏𝑖(𝐵ℎ,𝑆) be the number of blocking containers in stack 𝑖. By the linearity

of expectation, we have Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)] = Eℎ,𝑆

[︁∑︀𝑆
𝑖=1 𝑏

𝑖(𝐵ℎ,𝑆)
]︁
=
∑︀𝑆

𝑖=1 Eℎ,𝑆 [𝑏
𝑖(𝐵ℎ,𝑆)] =

𝛼ℎ × 𝑆, where 𝛼ℎ = Eℎ,𝑆 [𝑏
1(𝐵ℎ,𝑆)] = Eℎ,1 [𝑏(𝐵ℎ,1)]. This relies on the fact that each

stack is identically distributed.

Now let us compute 𝛼ℎ. It is clear that 𝛼1 = 0. For ℎ > 2, by conditioning on

the event that the topmost container is the smallest number in the stack or not, we

obtain the recursive equation 𝛼ℎ = 𝛼ℎ−1 + (ℎ − 1)/ℎ. Finally by induction we have

𝛼ℎ = ℎ−∑︀ℎ
𝑖=1 1/𝑖 which completes the proof.

The heuristic MinMax [10]

Suppose 𝑛 is the target container located in stack 𝑠, and 𝑟 is the topmost blocking

container in 𝑠. For convenience, we denote by min(𝑠𝑖) the minimum of stack 𝑠𝑖 (note

that min(𝑠𝑖) = 𝐶 + 1 if 𝑠𝑖 is empty). MinMax uses the following rule to determine

𝑠* ̸= 𝑠, the stack where 𝑟 should be relocated to. If there is a stack 𝑠𝑖 with |𝑠𝑖| < 𝑇 ,

where min(𝑠𝑖) is greater than 𝑟, then MinMax chooses such a stack where min(𝑠𝑖)

69

is minimized, since stacks with larger minimums can be useful for larger blocking

containers (as 𝑟 will never be relocated again, we say this relocation of 𝑟 is a “good”

move). If there is no stack satisfying min(𝑠𝑖) > 𝑟 (any relocation of 𝑟 can only result

in a “bad” move), then MinMax chooses the stack where min(𝑠𝑖) is maximized to

delay the next unavoidable relocation of 𝑟 as much as possible. We will refer to

this heuristic as heuristic MinMax and denote its number of relocations by 𝑧𝑀(𝐵ℎ,𝑆).

Notice that 𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆) 6 𝑧𝑀(𝐵ℎ,𝑆). Finally we state the following simple fact, which

does not require a formal proof:

Observation 2. For any configuration 𝐵 with 𝑆 stacks and at most 𝑆 containers,

we have

𝑏(𝐵) = 𝑧𝑜𝑝𝑡(𝐵) = 𝑧𝑀(𝐵). (3.17)

Definition of “special” stacks.

For ℎ, 𝑆 ∈ N, a stack in 𝐵ℎ,𝑆 is called “special" if all of its containers belong to

the 𝑆 highest. Given this definition, a stack in 𝐵ℎ,𝑆+1 is “special" if all containers

belong to the 𝑆+1 highest or equivalently, if each of its containers has index at least

𝜔ℎ,𝑆 = (ℎ− 1)(𝑆 + 1) + 1. We will also consider the following event:

Ωℎ,𝑆 = {𝐵ℎ,𝑆+1 has at least 1 “special” stack} . (3.18)

Lemma 3 states that the event Ωℎ,𝑆 has a probability that increases exponentially

fast to 1 as a function of 𝑆. The proof of Lemma 3 can be found in Appendix A.2.

Lemma 3. Let ℎ, 𝑆 ∈ N such that 𝑆 > ℎ+1 and Ωℎ,𝑆 be the event defined by equation

(3.18), then we have

P(Ωℎ,𝑆) 6 𝑒−𝜃ℎ(𝑆+1), (3.19)

where

𝜃ℎ =
1

8ℎ

(︂
2

ℎ(ℎ+ 1)

)︂2ℎ

> 0. (3.20)

70

3.4.2 An Average-Case Asymptotic Analysis of CRP

The major result of this section states that when the number of stacks increases to

infinity, the expected optimal number of relocations is asymptotically proportional to

the expected number of blocking containers.

Theorem 1. Let 𝑏(.) be the counting lower bound and 𝑧𝑜𝑝𝑡(.) be the optimal number

of relocations defined in section 3.1. Then for ℎ, 𝑆 ∈ N such that 𝑆 > ℎ+ 1, we have

1 6
Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]

Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]
6 𝑓ℎ(𝑆) (3.21)

where

𝑓ℎ(𝑆) = 1 +
𝐾ℎ

𝑆
→

𝐶→ ∞
1 (3.22)

where 𝐾ℎ is a constant defined by equation (3.28).

Proof. The basic intuition is that, as the number of stacks grows, for any blocking

container, we can find a “good” stack with high probability. This implies that with

high probability, each container is only relocated once. More formally, as 𝑆 grows,

with high probability Eℎ,𝑆+1[𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1)]− Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)] is exactly 𝛼ℎ. Therefore,

for large enough 𝑆, Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)] essentially behaves like 𝛼ℎ × 𝑆, which is equal to

Eℎ,𝑆[𝑏(𝐵ℎ,𝑆)] (according to Lemma 2).

Since for all configurations 𝐵ℎ,𝑆, 𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆) > 𝑏(𝐵ℎ,𝑆) then
Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]

Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]
> 1.

Moreover, we have:

Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]

Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]
= 1 +

Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]− Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]

Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]

= 1 +
1

𝛼ℎ𝑆
(Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]− 𝛼ℎ𝑆)

= 1 +
𝑔ℎ(𝑆)

𝛼ℎ𝑆
, (3.23)

where

𝑔ℎ(𝑆) = Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]− 𝛼ℎ𝑆. (3.24)

Now we claim that there exists a constant 𝜃ℎ > 0 (defined in equation (3.20) such

71

that:

Eℎ,𝑆+1 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1)] 6 Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)] + 𝛼ℎ + ℎ(𝑇 − 1)(𝑆 + 1)𝑒−𝜃ℎ(𝑆+1), ∀𝑆 > ℎ+ 1 (3.25)

Equation (3.25) studies how Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)] evolves and states that it increases almost

linearly in 𝛼ℎ which shows that the function 𝑔ℎ(.) is essentially bounded. Before

proving equation (3.25), we conclude the proof of Theorem 1. Using equation (3.25),

we have for all 𝑆 > ℎ+ 1:

Eℎ,𝑆+1 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1)] 6 Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)] + 𝛼ℎ + ℎ(𝑇 − 1)(𝑆 + 1)𝑒−𝜃ℎ(𝑆+1)

=⇒ Eℎ,𝑆+1 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1)]− 𝛼ℎ(𝑆 + 1) 6 Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]− 𝛼ℎ𝑆 + ℎ(𝑇 − 1)(𝑆 + 1)𝑒−𝜃ℎ(𝑆+1)

=⇒ 𝑔ℎ(𝑆 + 1) 6 𝑔ℎ(𝑆) + ℎ(𝑇 − 1)(𝑆 + 1)𝑒−𝜃ℎ(𝑆+1)

=⇒ 𝑔ℎ(𝑆) 6 𝑔ℎ(ℎ+ 1) + ℎ(𝑇 − 1)
𝑆∑︁

𝑖=ℎ+2

(︀
𝑖𝑒−𝜃ℎ𝑖

)︀
=⇒ 𝑔ℎ(𝑆) 6 𝑔ℎ(ℎ+ 1) + ℎ(𝑇 − 1)

∞∑︁
𝑖=1

(︀
𝑖𝑒−𝜃ℎ𝑖

)︀
=⇒ 𝑔ℎ(𝑆) 6 𝑔ℎ(ℎ+ 1) +

𝑒𝜃ℎℎ(𝑇 − 1)

(𝑒𝜃ℎ − 1)2
= 𝐾 ′

ℎ. (3.26)

Therefore using equations (3.23) and (3.26), we have

Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]

Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]
6 1 +

𝐾ℎ

𝑆
= 𝑓ℎ(𝑆), (3.27)

where

𝐾ℎ =
𝐾 ′

ℎ

𝛼ℎ

=

𝑔ℎ(ℎ+ 1) +
𝑒𝜃ℎℎ(𝑇 − 1)

(𝑒𝜃ℎ − 1)2

𝛼ℎ

. (3.28)

Now let us prove equation (3.25). Recall that a stack is defined to be “special” if

none of its containers are smaller than 𝜔ℎ,𝑆 = (ℎ − 1)(𝑆 + 1) + 1 and that Ωℎ,𝑆 =

{𝐵ℎ,𝑆+1 has at least one “special” stack} .

The intuition is the following: the probability of having a “special” stack grows

quickly to 1 as a function of 𝑆, implying that the event Ωℎ,𝑆 happens with high

72

probability. Now, conditioned on Ωℎ,𝑆, we more easily express the difference between

configurations of size 𝑆 + 1 and 𝑆 in the following way. We claim that

Eℎ,𝑆+1 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1)|Ωℎ,𝑆] 6 Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)] + 𝛼ℎ. (3.29)

Let 𝐵ℎ,𝑆+1 be a given configuration with 𝑆 + 1 stacks that verifies Ωℎ,𝑆. Since stacks

in configurations can be interchanged, we suppose that a “special” stack is the first

(leftmost) stack of the configuration. We also denote 𝑛1, 𝑛2, . . . , 𝑛ℎ the containers of

the first stack. We know that 𝑛1, 𝑛2, . . . , 𝑛ℎ > 𝜔ℎ,𝑆 and 𝑛1 ̸= 𝑛2 ̸= . . . ̸= 𝑛ℎ. Finally

let 𝐵̂ℎ,𝑆 be the configuration 𝐵ℎ,𝑆+1 without its first stack (see Figure 3-3).

Figure 3-3: Decomposition of the configuration 𝐵ℎ,𝑆+1 (The right part has 𝑆 stacks).

First we prove that

𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1) 6 𝑧𝑜𝑝𝑡(𝐵̂ℎ,𝑆) + 𝑏

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ . (3.30)

To prove equation (3.30), we construct a feasible sequence 𝜎 for the configuration of

size 𝑆 + 1 for which the number of relocations is equal to the right side of equation

(3.30). Let 𝜎𝑜𝑝𝑡(𝐵̂ℎ,𝑆) the optimal sequence for 𝐵̂ℎ,𝑆, 𝑡′ = min{𝑛1, . . . , 𝑛ℎ} be the first

time step when the target container in 𝜎𝑜𝑝𝑡(𝐵̂ℎ,𝑆) is larger than min{𝑛1, 𝑛2, . . . , 𝑛ℎ}
and 𝐵′

ℎ,𝑆 be the configuration obtained at 𝑡′ using 𝜎𝑜𝑝𝑡(𝐵̂ℎ,𝑆). Let the first 𝑡′−1 moves

73

of 𝜎 be the first 𝑡′ − 1 moves of 𝜎𝑜𝑝𝑡(𝐵̂ℎ,𝑆). Note that 𝐵′
ℎ,𝑆 has at most 𝑆 + 1 − ℎ

(which is at most 𝑆) containers due to the choice of 𝜔ℎ,𝑆. By Fact 2, the number of

relocations performed by 𝜎𝑜𝑝𝑡(𝐵̂ℎ,𝑆) from 𝑡′ until the end is 𝑏(𝐵′
ℎ,𝑆). Therefore

𝑧𝑜𝑝𝑡(𝐵̂ℎ,𝑆) =

⎧⎨⎩ # relocations up to 𝑡′

done by 𝜎𝑜𝑝𝑡(𝐵̂ℎ,𝑆)

⎫⎬⎭+ 𝑏(𝐵′
ℎ,𝑆) (3.31)

After 𝑡′, we run heuristic MinMax on

𝐵′
ℎ,𝑆+1 =

(︂[︁
𝑛1 . . . 𝑛ℎ

]︁𝑇
∪ 𝐵′

ℎ,𝑆

)︂
.

We claim that 𝑧𝜎 (number of relocations performed by the feasible sequence 𝜎

constructed above) is exactly the right side of equation (3.30). There are at most 𝑆+1

containers in 𝐵′
ℎ,𝑆+1, therefore using Fact 2, we know that if we apply the heuristic

MinMax to this configuration, then the number of relocations done by MinMax is

𝑏(𝐵′
ℎ,𝑆+1) = 𝑏(𝐵′

ℎ,𝑆) + 𝑏

(︂[︁
𝑛1 . . . 𝑛ℎ

]︁𝑇)︂
. Therefore 𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1) 6 𝑧𝜎(𝐵ℎ,𝑆+1)

and

𝑧𝜎(𝐵ℎ,𝑆+1) =

⎧⎨⎩ # relocations up to 𝑡′

done by 𝜎𝑜𝑝𝑡(𝐵̂ℎ,𝑆)

⎫⎬⎭+ 𝑏(𝐵′
ℎ,𝑆) + 𝑏

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ (3.32)

which gives us

𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1) 6 𝑧𝑜𝑝𝑡(𝐵̂ℎ,𝑆) + 𝑏

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ ,

and proves equation (3.30).

Now we can take the expectation from both sides of equation (3.30) over a uniform

distribution of the rest of the ℎ×𝑆 containers that are not in the first stack. We claim

that the first term on the right hand-side of equation (3.30) is exactly Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)].

For any configuration that appears in 𝐵̂ℎ,𝑆 we can map it to a unique configuration

74

𝐵ℎ,𝑆 where all containers are between 1 and ℎ𝑆, and vice versa. Thus,

Eℎ,𝑆

⎡⎢⎢⎢⎣𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ 6 Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)] + 𝑏

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ . (3.33)

Next, we take the expectation of both sides of equation (3.33) over possible first

stacks, which is a “special” stack. Now notice that if 𝐵ℎ,𝑆+1 is generated uniformly in

the sets of configurations of size 𝑆 + 1, then conditioned on Ωℎ,𝑆, the probability of

having a certain stack [𝑛1, . . . , 𝑛ℎ]
𝑇 is identical for any 𝑛1 ̸= . . . ̸= 𝑛ℎ > 𝜔ℎ,𝑆 and it is

given by

P

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ Ωℎ,𝑆

⎞⎟⎟⎟⎠ =
(𝑆 + 1− ℎ)!
(𝑆 + 1)!

=
1(︀

𝑆+1
ℎ

)︀
ℎ!
.

Therefore we can write:

Eℎ,𝑆+1 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1) | Ωℎ,𝑆]

=
∑︁

(𝑛1,...,𝑛ℎ)
𝑛𝑖 ̸= 𝑛𝑗
𝑛𝑖> 𝜔ℎ,𝑆

⎛⎜⎜⎜⎝Eℎ,𝑆

⎡⎢⎢⎢⎣𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦ ,Ωℎ,𝑆

⎤⎥⎥⎥⎦ × P

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ Ωℎ,𝑆

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ (3.34)

=
∑︁

(𝑛1,...,𝑛ℎ)
𝑛𝑖 ̸= 𝑛𝑗
𝑛𝑖> 𝜔ℎ,𝑆

⎛⎜⎜⎜⎝Eℎ,𝑆

⎡⎢⎢⎢⎣𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ × P

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ Ωℎ,𝑆

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ (3.35)

75

6 Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]
∑︁

(𝑛1,...,𝑛ℎ)
𝑛𝑖 ̸= 𝑛𝑗
𝑛𝑖> 𝜔ℎ,𝑆

P

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ Ωℎ,𝑆

⎞⎟⎟⎟⎠

+
∑︁

(𝑛1,...,𝑛ℎ)
𝑛𝑖 ̸= 𝑛𝑗
𝑛𝑖> 𝜔ℎ,𝑆

𝑏

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠× P

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ Ωℎ,𝑆

⎞⎟⎟⎟⎠

6 Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)] +
∑︁

(𝑛1,...,𝑛ℎ)
𝑛𝑖 ̸= 𝑛𝑗
𝑛𝑖> 𝜔ℎ,𝑆

𝑏

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠× P

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ Ωℎ,𝑆

⎞⎟⎟⎟⎠ (3.36)

The equality between (3.34) and (3.35) comes from the fact that if we know that

𝐵ℎ,𝑆+1 has a “special” stack, then we do not need to condition on Ωℎ,𝑆. Equation

(3.36) uses the fact that
∑︀

𝑛1 ̸= ... ̸= 𝑛ℎ
𝑛𝑖> 𝜔ℎ,𝑆

P

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ Ωℎ,𝑆

⎞⎟⎟⎟⎠ = 1. Note that, given any

(𝑛1, . . . , 𝑛ℎ) such that 𝑛𝑖 ̸= 𝑛𝑗, we have

Eℎ,1

⎡⎢⎢⎢⎣𝑏
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝑛1

. . .

𝑛ℎ

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ = 𝛼ℎ,

where the expectation is over a random order of (𝑛1, . . . , 𝑛ℎ). This is true regardless

of the set (𝑛1, . . . , 𝑛ℎ) that is drawn from (See Fact 1). This implies that the second

term in the right hand side of equation (3.36) is equal to 𝛼ℎ; Therefore, we get

equation (3.29). Now we want to focus on the event Ωℎ,𝑆. We give an upper bound

on Eℎ,𝑆+1

[︀
𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1) | Ωℎ,𝑆

]︀
. For any configuration, to retrieve one container, we

need at most 𝑇 − 1 relocations (since at most 𝑇 − 1 containers are blocking it), thus

for any configuration, the optimal number of relocations is at most 𝑇 − 1 times the

number of containers (ℎ(𝑆 + 1)) which gives us ℎ(𝑇 − 1)(𝑆 + 1) as an upper bound

76

on the optimal number of relocations. We use this universal bound to get

Eℎ,𝑆+1

[︀
𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1) | Ωℎ,𝑆

]︀
6 ℎ(𝑇 − 1)(𝑆 + 1). (3.37)

Finally using Lemma 3, we have

Eℎ,𝑆+1 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1)] = Eℎ,𝑆+1 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1) | Ωℎ,𝑆]P(Ωℎ,𝑆) + Eℎ,𝑆+1

[︀
𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1) | Ωℎ,𝑆

]︀
P(Ωℎ,𝑆)

6 Eℎ,𝑆+1 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1) | Ωℎ,𝑆] + Eℎ,𝑆+1

[︀
𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆+1) | Ωℎ,𝑆

]︀
𝑒−𝜃ℎ(𝑆+1)

6 Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)] + 𝛼ℎ + ℎ(𝑇 − 1)(𝑆 + 1)𝑒−𝜃ℎ(𝑆+1)

which proves equation (3.25), hence completes the proof of Theorem 1.

In the next corollary, we show that the optimal solution of the unrestricted CRP

has a similar asymptotic behavior. We remind that the unrestricted CRP refers to

the problem where we can also relocate non-blocking containers. The proof is trivial

since by definition 𝑏(𝐵ℎ,𝑆) 6 𝑧𝑢𝑛𝑟(𝐵ℎ,𝑆) 6 𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆).

Corollary 1. Let 𝑧𝑢𝑛𝑟(𝐵ℎ,𝑆) be the optimal number of relocations for the unrestricted

CRP. For 𝑆 > ℎ+ 1, we have

1 6
Eℎ,𝑆 [𝑧𝑢𝑛𝑟(𝐵ℎ,𝑆)]

𝛼ℎ𝑆
6 𝑓ℎ(𝑆),

where 𝑓ℎ is the function defined in Theorem 1.

Experimental results on the efficiency of heuristic 𝐻

Theorem 1 gives insights on how the expected optimal solution of the CRP behaves

asymptotically on random configurations. To give more insights on CRP, we show

experimentally that the same result holds for heuristic MinMax, i.e., the ratio of

Eℎ,𝑆 [𝑧𝑀(𝐵ℎ,𝑆)] and Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)] converges to 1 as 𝑆 goes to infinity. We take ℎ =

𝑇 − 1 = 4 and for each size 𝑆, we compute both expectations over a million instances

generated uniformly, take their ratio and plot the result in Figure 3-4. Notice that

77

we have

1 6
Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]

Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]
6

Eℎ,𝑆 [𝑧𝑀(𝐵ℎ,𝑆)]

Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]
,

so Figure 3-4 also shows experimentally that Theorem 1 holds.

S: number of stacks

E h
,S

[z
M

(B
h

,S
)]

E h
,S

[b
(B

h
,S

)]

Figure 3-4: Simulation of the convergence of the ratio.

First, note that Figure 3-4 implies that the relative gap between heuristic MinMax

and 𝑏 shrinks to 0 as 𝑆 increases. Moreover we have

Eℎ,𝑆 [𝑧𝑀(𝐵ℎ,𝑆)]− Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]

Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]
6

Eℎ,𝑆 [𝑧𝑀(𝐵ℎ,𝑆)]− Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]

Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]
,

and thus the relative gap of MinMax with optimality also converges to 0 as 𝑆 grows

to infinity.

S: number of stacks

E h
,S

[z
M

(B
h

,S
)]
�

E h
,S

[b
(B

h
,S

)]

Figure 3-5: Simulation of the convergence of the difference.

78

In the proof of Theorem 1, we also study the function 𝑔ℎ(𝑆) = Eℎ,𝑆 [𝑧𝑜𝑝𝑡(𝐵ℎ,𝑆)]−
Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)]. Note that 𝑔ℎ(𝑆) 6 Eℎ,𝑆 [𝑧𝑀(𝐵ℎ,𝑆)] − Eℎ,𝑆 [𝑏(𝐵ℎ,𝑆)] where the right-

hand side of the inequality is the function plotted in Figure 3-5. The plot shows that

𝑔ℎ(𝑆) 6 1.25 for all 𝑆, meaning that 𝑔ℎ(𝑆) is bounded as we proved in Theorem 1.

Moreover, the plot implies that heuristic MinMax is on average at most 1.25 away

from the optimal solution, so heuristic MinMax is relatively more efficient in the case

of large configurations. Intuitively, the probability of having a good stack converges

to 1, as we increase the number of stacks; hence the problem tends to become easier

as 𝑆 grows.

Finally, in the proof, we note that the rate of convergence of the minimum 𝑧𝑜𝑝𝑡

to 𝑏 is at least 1/𝑆. Interestingly, we can infer from Figure 3-4. that the rate of

convergence of the ratio for heuristic MinMax is also proportional to 1/𝑆.

79

80

Chapter 4

The Stochastic Container Relocation

Problem

4.1 Contributions

The contributions of this chapter are (each contribution corresponds to one section

of this chapter):

1. A new stochastic model, referred to as the batch model. This new model uses

the same probability distribution as the online model from [86]. However, the

two models differ in the way each reveals new information on the retrieval order.

The batch model is motivated, described, and compared with the online model.

2. Lower and upper bounds for the SCRP. We derive a new family of lower

bounds for which we show theoretical properties. Furthermore, we develop

two new fast and efficient heuristics.

3. A novel optimal algorithm scheme based on decision trees and prun-

ing strategies referred to as Pruning-Best-First-Search (PBFS), which

takes advantage of the properties of the aforementioned lower bounds. The al-

gorithm is explained with pseudocode in Algorithm 2.

4. A second novel algorithm tuned for the case of larger batches referred

81

to as PBFS-Approximate (PBFSA). We build upon PBFS and derive a

sampling strategy resulting in an approximate algorithm with an expected er-

ror that we bound theoretically. The pseudocode of the second algorithm is

presented in Algorithm 3.

5. Extensive computational experiments using an existing set of in-

stances. The first experiment exhibits the efficiency of PBFS, our lower bounds

and two new heuristics for the batch model based on existing instances, pre-

sented in [43], where batches of containers are small (2 containers per batch

on average). The second experiment illustrates the advantage of using PBFSA

when batches of containers are larger, based on instances obtained by modifying

the existing set. In addition, most of our techniques including lower bounds,

heuristics, and the PBFS algorithm also apply to the online model. The third

experiment shows that, in this model, PBFS outperforms the algorithm intro-

duced in [43] in the sense that it is faster for instances that Ku and Arthanari

[43] could solve, and it can solve problems of larger size. Furthermore, our two

new heuristics also outperform the best existing heuristic (ERI) for the online

model. Finally, the last experiment is used to test the conjecture about the

optimality of the leveling heuristic in the special case of the online model with

a unique batch of containers.

4.2 Problem Description

4.2.1 Motivation

Before stating the general assumptions of the batch model, let us motivate our prob-

lem using a typical example. We consider a port with a truck appointment system

(TAS) offering 30-minute time windows during which truck drivers who want to re-

trieve a container can register to arrive at the port. For the sake of the example,

we consider the time window between 9:00 a.m. and 9:30 a.m. Multiple trucks can

be registered in this time window: in this example, presented in Figure 4-1, 3 trucks

82

(designated 𝑖1, 𝑖4 and 𝑖6) are registered for this time window. We assume that all 3

trucks arrive on time (between 9:00 a.m. and 9:30 a.m.) and that their contain-

ers (similarly designated 𝑖1, 𝑖4 and 𝑖6) form a batch to be retrieved. We display the

configuration of interest in Figure 4-2 (3 tiers, 3 stacks and 6 containers).

Truck

Appointment	time	window

Service	Time

Waiting	TimeWaiting	time Service	
TimeService	time

Waiting	TimeWaiting	timeTruck

Waiting	TimeWaiting	timeTruck

Truck	
arrival

Truck	
arrival

Truck	
arrival

New	
information	
revealed

Start	batch	retrieval	
using	decisions

i4

i6

i1

9:00am 9:30am

Service	
TimeService	time

Service	
TimeService	time

Figure 4-1: Timeline of events for the batch model with three trucks.

We assume that trucks arrive randomly within the time window, so each truck

arrival order is equally likely to happen. In this example, there are 6 potential

arrival orders, each with 1/6 chance of occurring.

At 9:00 a.m., none of the 3 trucks has arrived and their relative retrieval order

is unknown. Consequently, these 3 containers are all labeled 1 in Figure 4-2a. In

Figure 4-2b, the IDs of all containers and their locations are depicted.

Between 9:00 a.m. and 9:30 a.m., trucks arrive in a particular order (e.g., Truck

𝑖4 first, then 𝑖6, and 𝑖1 last). In busy terminals, trucks typically queue up as they wait

to be served. Their place in line is based on their arrival order, so the port operator

generally retrieves containers based on the arrival order. Processing in this way, on

a first-come first-served basis, avoids issues with truck unions and maintains

fairness among drivers. Consequently, we take the retrieval order to be exogenously

determined and we do not consider it a potential decision for port operators.

To provide a specified level of service to the truck drivers, the terminal operator

83

often sets a target average waiting time. If the appointment time window is about the

same as or shorter than the target average waiting time, the operator has information

about the retrieval order of containers in the batch before the retrieval of those con-

tainers must begin to meet the target waiting time. Given these conditions, we make

the simplifying assumption in this work that the retrieval of a batch begins at the

end of the appointment time window associated with the batch, and the retrieval

order of all containers in the batch is known at the moment the retrieval

of the batch commences. In our example, the target average waiting time is 30

minutes. At 9:30 a.m., the retrieval order of the batch (𝑖4, 𝑖6, 𝑖1) is known and the

retrieval of the batch commences soon after. The updated information is depicted in

the configuration of Figure 4-2c.

The assumption that containers to be retrieved are revealed on a batch basis

models the reality that port operators typically know information about all the con-

tainers in the same batch before starting to retrieve them. This is especially true for

busy ports that have a TAS. Moreover, we assume that no information about future

batches is available when making decisions for the current batch. Similar modeling

assumptions have been made in previous work (see [86, 43]).

1
5 4

1 5 1

4-2a Before any truck
has arrived (9:00

a.m.).

𝑖6
𝑖3 𝑖5

𝑖1 𝑖2 𝑖4

4-2b IDs to match
containers with

trucks.

2
5 4

3 5 1

4-2c Before the first container
gets retrieved (9:30 a.m.).

Figure 4-2: SCRP example. The left configuration is the input to our problem. The
configuration in the middle denotes each container with an ID 𝑖𝑙 where 𝑙 = 1, . . . , 6.
The configuration on the right denotes the order of the first batch after it is revealed.

The general assumptions we apply to our model are formally stated in Section

4.2.2 (𝐴*
5 and 𝐴*

6) and result in the batch model, the main focus of this chapter. The

goal of the SCRP is to find a sequence of moves minimizing the expected number of

relocations needed to empty the initial configuration.

Labels in Figures 4-2a and 4-2c are defined such that two containers have the

84

same label only if they are in the same batch and their relative order is yet to be

revealed. In our example, since Container 𝑖5 is the only container in the second batch

and is retrieved after the first 3 containers, it is necessarily the fourth container to

be retrieved (thus labeled 4). Containers 𝑖2 and 𝑖3 are labeled 5 and when their

relative order is revealed, one will be labeled 5 and the other 6. We mention that

Figure 4-3: Average truck turn times in minutes by terminal at Los Angeles-Long
Beach port in June and July 2017 (source: JOC.com). The dashed line shows the
length of a time window (60 minutes) in the truck appointment system.

these assumptions apply to an increasing number of port terminals. For example,

Figure 4-3 presents the average truck turn time in minutes for all 15 terminals of

Los Angeles-Long Beach port (the largest U.S. port for containers) in June and July

2017. In many of these terminals, a truck appointment system with 60-minutes time

windows (see [14]) has been implemented, and Figure 4-3 shows that most terminals

have an average truck turn time longer than 60 minutes.

The online model. The main distinguishing difference between the batch model

and the online model introduced in [86] is the information revelation process. The

online model disregards any within-batch information available when it plans the

moves to retrieve a container. Hence new information is revealed one container

at a time. The online model applies specially to less busy ports where the waiting

time is significantly shorter than the appointment time windows. In this case, because

there is a limited number of trucks waiting, limited information about the future is

85

https://www.joc.com/trucking-logistics/drayage/rising-la-lb-port-truck-turns-peak-season-warning_20170801.html

known. We show through Lemma 4 that ignoring information (if available) results

in a potential loss of operational efficiency as measured by the expected number of

relocations. In addition, most of our batch-based approaches also apply to the online

model, and we provide numerical results based on it in Section 4.7.

4.2.2 Assumptions, Notations, and Formulation

To define our problem as a multistage stochastic optimization problem (the number

of “stages” is the number of batches), we need to define a probabilistic model of the

container retrieval order, a scheme for revealing new information about this order,

and an objective function.

The batch model. Let us state the assumptions and objective of the stochastic

CRP under the batch model. Assumptions 𝐴*
1, 𝐴*

2, 𝐴*
3, and 𝐴*

4 are respectively

identical to Assumptions 𝐴1, 𝐴2, 𝐴3, and 𝐴4 (see Section 3.2).

A*
5: (probabilistic model) Given an ordering of batches, the probability distri-

bution of the retrieval order is such that: 1) all the containers in a given

batch are retrieved before any containers in a later batch, and 2) within

each batch of containers, the order of the containers is drawn from

a uniform random permutation. This chapter focuses mainly on this lat-

ter assumption, but our model can be extended to the more general case of any

probability distribution on permutations (not necessarily uniform) that respects

the order of batches.

A*
6: (revelation of new information) For each batch 𝑤, the full relative order

of containers from the 𝑤𝑡ℎ batch (i.e., the specific random permutation

drawn) is revealed after all containers in batch 1 through 𝑤 − 1 have

been retrieved.

Given these assumptions, we want to find the minimum expected number of relo-

cations to retrieve all containers from a given initial configuration. We refer to this

problem as the “stochastic CRP.” Let us introduce some notations:

86

- The problem size is given by (𝑇, 𝑆, 𝐶), respectively the number of tiers, stacks,

and containers in the initial configuration.

- The number of batches of containers in the initial configuration is denoted by

𝑊 . We consider that the batches are ordered from 1 to 𝑊 .

- For each batch 𝑤 ∈ {1, . . . ,𝑊}, let 𝐶𝑤 be the number of containers in 𝑤. By

definition
𝑊∑︁
𝑤=1

𝐶𝑤 = 𝐶.

- Each container has two attributes:

∙ The first attribute, denoted by (𝑐𝑙)𝑙∈{1,...,𝐶}, is the label and is defined as

follows: initially, containers in batch 𝑤 are labeled by 𝐾𝑤 such that 𝐾𝑤 =

1 +
𝑤−1∑︁
𝑢=1

𝐶𝑢, where the sum is empty for 𝑤 = 1. Then, for 𝑘 ∈ {1, . . . , 𝐶},

if a container is revealed to be the 𝑘𝑡ℎ container to be retrieved, its label

changes to 𝑘. Using this labeling, at any point in the retrieval process, two

containers have the same label only if they are in the same batch and their

relative order is yet to be revealed.

∙ The second attribute is a unique ID denoted by (𝑖𝑙)𝑙∈{1,...,𝐶}. This ID is

only used to identify uniquely containers in the initial configuration (see

Figure 4-2b) and for the sake of clarity of the following probabilistic model.

Note that for 𝑙 ∈ {1, . . . , 𝐶}, if Container 𝑖𝑙 is in batch 𝑤, then 𝑐𝑙 = 𝐾𝑤

(until the actual retrieval order of 𝑖𝑙 is revealed).

- For 𝑘 ∈ {1, . . . , 𝐶}, let 𝜁𝑘 be a random variable taking values in (𝑖𝑙)𝑙∈{1,...,𝐶}, such

that {𝜁𝑘 = 𝑖𝑙} is the event that Container 𝑖𝑙 is the 𝑘𝑡ℎ container to be retrieved.

According to Assumption 𝐴*
5, the distribution of (𝜁𝑘)𝑘∈{1,...,𝐶} is given by

P [𝜁𝑘 = 𝑖𝑙] =

⎧⎨⎩ 1
𝐶𝑤

, if 𝑤 = min{𝑢 ∈ {1, . . . ,𝑊} | 𝐾𝑢 > 𝑘} and 𝑐𝑙 = 𝐾𝑤

0 , otherwise

In this case, there are a total of
∏︀𝑊

𝑤=1 (𝐶𝑤!) orders with equal probabilities.

More generally, we consider the case where the probability of each order within

87

each batch is not necessarily equally likely. However, we still assume that the

batches are ordered, thus P [𝜁𝑘 = 𝑖𝑙] can be positive only if 𝑤 = min{𝑢|𝐾𝑢 > 𝑘}
and 𝑐𝑙 = 𝐾𝑤. In the practical case where probabilities are not considered to

be uniform, a list of potential retrieval orders and their associated probability

is given for each batch of containers (based on historical data), thus P [𝜁𝑘 = 𝑖𝑙]

can easily be inferred from these probabilities.

- An action corresponds to a sequence of relocations to retrieve one container.

For 𝑘 ∈ {1, . . . , 𝐶}, we denote the action for the 𝑘𝑡ℎ retrieval by 𝑎𝑘, and the

feasible set of actions is defined according to Assumptions 𝐴*
2 and 𝐴*

3.

- For a given batch 𝑤 ∈ {1, . . . ,𝑊},

1. let 𝑦𝑤 denote the configuration before the retrieval order of containers in

batch 𝑤 is revealed, i.e., before 𝜁𝐾𝑤 , . . . , 𝜁𝐾𝑤+𝐶𝑤−1 are revealed. Note that

𝑦1 corresponds to the initial configuration. We denote 𝑥𝐾𝑤 the configura-

tion after the retrieval order of containers in batch 𝑤 is revealed, and before

action 𝑎𝐾𝑤 is taken. If
𝜁𝐾𝑤 ,...,𝜁𝐾𝑤+𝐶𝑤−1−−−−−−−−−−→ represents the revelation of the ran-

dom variables 𝜁𝐾𝑤 , . . . , 𝜁𝐾𝑤+𝐶𝑤−1, we can write 𝑦𝑤
𝜁𝐾𝑤 ,...,𝜁𝐾𝑤+𝐶𝑤−1−−−−−−−−−−→ 𝑥𝐾𝑤 .

2. After the retrieval order of batch 𝑤 has been revealed, actions to retrieve

the revealed containers must be made. If 𝐶𝑤 > 1, then {𝐾𝑤, . . . , 𝐾𝑤 +

𝐶𝑤 − 2} ̸= ∅. In this case, for 𝑘 ∈ {𝐾𝑤, . . . , 𝐾𝑤 + 𝐶𝑤 − 2}, let 𝑥𝑘+1 be

the configuration after applying action 𝑎𝑘 to state 𝑥𝑘 and before action

𝑎𝑘+1. Therefore, if 𝑎𝑘−→ represents the application of action 𝑎𝑘, we have

𝑥𝑘
𝑎𝑘−→ 𝑥𝑘+1.

3. The last container to be retrieved in batch 𝑤 is the (𝐾𝑤 + 𝐶𝑤 − 1)𝑡ℎ con-

tainer, thus, according to the previous point, 𝑥𝐾𝑤+𝐶𝑤−1 corresponds to the

configuration before 𝑎𝐾𝑤+𝐶𝑤−1 is taken. After this retrieval, the order of

the next batch (batch 𝑤+1) has to be revealed, and according to the first

point, the configuration is 𝑦𝑤+1. The configuration after retrieving batch

𝑊 will be empty, thus we define 𝑦𝑊+1 to be the empty configuration. So

88

if
𝑎𝐾𝑤+𝐶𝑤−1−−−−−−→ represents the application of action 𝑎𝐾𝑤+𝐶𝑤−1, then we have

𝑥𝐾𝑤+𝐶𝑤−1
𝑎𝐾𝑤+𝐶𝑤−1−−−−−−→ 𝑦𝑤+1.

In summary, we have

∀ 𝑤 ∈ {1, . . . ,𝑊} ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦𝑤

𝜁𝐾𝑤 ,...,𝜁𝐾𝑤+𝐶𝑤−1−−−−−−−−−−→ 𝑥𝐾𝑤

𝑥𝑘
𝑎𝑘−→ 𝑥𝑘+1, if 𝐶𝑤 > 1 , ∀ 𝑘 ∈ {𝐾𝑤, . . . , 𝐾𝑤 + 𝐶𝑤 − 2}

𝑥𝐾𝑤+𝐶𝑤−1
𝑎𝐾𝑤+𝐶𝑤−1−−−−−−→ 𝑦𝑤+1.

- Let the function 𝑟(.) be such that 𝑟(𝑥) is number of relocations to retrieve the

target container in configuration 𝑥. It is also equal to the number of containers

blocking the target container. This function is only defined for configurations in

which the target container is identified. Specifically, it is defined for (𝑥𝑘)𝑘=1,...,𝐶

(but not for (𝑦𝑤)𝑤=1,...,𝑊). For 𝑘 ∈ {1, . . . , 𝐶}, we refer to 𝑟(𝑥𝑘) as the immediate

cost for the 𝑘𝑡ℎ retrieval.

- Let the function 𝑓(.) be such that 𝑓(𝑥) is the minimum expected number of

relocations required to retrieve all containers from configuration 𝑥. Typically,

𝑓(𝑥) is referred to as the cost-to-go function of configuration 𝑥. Note that it is

well defined for both (𝑥𝑘)𝑘=1,...,𝐶 and (𝑦𝑤)𝑤=1,...,𝑊 .

By definition we have:

∀ 𝑤 ∈ {1, . . . ,𝑊},

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓 (𝑦𝑤) = E

𝜁𝑘,...,𝜁𝑘+𝐶𝑤−1

[𝑓(𝑥𝑘)] , where 𝑘 = 𝐾𝑤,

𝑓 (𝑥𝑘) = 𝑟 (𝑥𝑘) + min
𝑎𝑘
{𝑓 (𝑥𝑘+1)} , if 𝐶𝑤 > 1 and ∀ 𝑘 ∈ {𝐾𝑤, . . . , 𝐾𝑤 + 𝐶𝑤 − 2},

𝑓 (𝑥𝑘) = 𝑟 (𝑥𝑘) + min
𝑎𝑘
{𝑓 (𝑦𝑤+1)} , where 𝑘 = 𝐾𝑤 + 𝐶𝑤 − 1,

which can be written as

∀ 𝑤 ∈ {1, . . . ,𝑊},

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓 (𝑦𝑤) = E

𝜁𝐾𝑤 ,...,𝜁𝐾𝑤+𝐶𝑤−1

[𝑓(𝑥𝐾𝑤)] ,

𝑓 (𝑥𝐾𝑤) = min
𝑎𝐾𝑤 ,...,𝑎𝐾𝑤+𝐶𝑤−1

{︃(︃
𝐾𝑤+𝐶𝑤−1∑︁

𝑘=𝐾𝑤

𝑟 (𝑥𝑘)

)︃
+ 𝑓 (𝑦𝑤+1)

}︃
,

(4.1)

89

and 𝑓 (𝑦𝑊+1) = 0. Therefore, the SCRP is concerned with finding 𝑓 (𝑦1), where by

induction:

𝑓 (𝑦1) = E
𝜁𝐾1

,...,𝜁𝐾1+𝐶1−1

[︃
min

𝑎𝐾1
,...,𝑎𝐾1+𝐶1−1

{︃
E

𝜁𝐾2
,...,𝜁𝐾2+𝐶2−1

[︃
. . . E

𝜁𝐾𝑊
,...,𝜁𝐾𝑊+𝐶𝑊−1

[︃
min

𝑎𝐾𝑊
,...,𝑎𝐾𝑊+𝐶𝑊−1

{︃
𝐶∑︁

𝑘=1

𝑟 (𝑥𝑘)

}︃]︃
. . .

]︃}︃]︃
. (4.2)

The online model. Using our notations, we briefly present the SCRP under the

online model. Instead of Assumption 𝐴*
6, the online model assumes that for each

retrieval 𝑘 ∈ {1, . . . , 𝐶}, only the next target container is revealed (i.e., 𝜁𝑘). Therefore,

we consider the states (𝑦𝑜𝑘, 𝑥𝑜𝑘)𝑘=1,...,𝐶 defined such that 𝑘 ∈ {1, . . . , 𝐶}, 𝑦𝑜𝑘
𝜁𝑘−→ 𝑥𝑜𝑘

𝑎𝑘−→
𝑦𝑜𝑘+1, where 𝑦𝑜𝐶+1 is the empty configuration. In this case, if 𝑓 𝑜 denotes the cost-to-go

function, then by definition we have 𝑓 𝑜 (𝑦𝑜𝑘) = E
𝜁𝑘
[𝑓 𝑜 (𝑥𝑜𝑘)] (with 𝑓 𝑜

(︀
𝑦𝑜𝐶+1

)︀
= 0), and

∀ 𝑘 ∈ {1, . . . , 𝐶}, 𝑓 𝑜 (𝑥𝑜𝑘) = min
𝑎𝑘

{︀
𝑟 (𝑥𝑜𝑘) + 𝑓 𝑜

(︀
𝑦𝑜𝑘+1

)︀}︀
. By induction, the SCRP under

the online model is hence concerned with finding:

𝑓 𝑜 (𝑦𝑜1) = E
𝜁1

[︃
min
𝑎1

{︃
E
𝜁2

[︃
. . . E

𝜁𝐶

[︃
min
𝑎𝐶

{︃
𝐶∑︁

𝑘=1

𝑟 (𝑥𝑜𝑘)

}︃]︃
. . .

]︃}︃]︃
.

The next lemma compares the batch and the online models theoretically (the

proof can be found in the Appendix B). It states that it is beneficial in terms of the

expected number of relocations to use the batch model compared to the online model,

if the first one applies. Practically, this suggests that the operator should always use

available information.

Lemma 4. Let 𝑦 be a given initial configuration, then we have

𝑓 (𝑦) 6 𝑓 𝑜 (𝑦) .

4.3 Decision Trees

Multistage stochastic optimization problems can be solved using decision trees in

which chance nodes and decision nodes typically alternate. A chance node embodies

the stochasticity of the model, whereas a decision node models the possible actions

90

of the algorithm. In a decision tree for the SCRP, a node represents a configuration.

The root node (denoted by 0) is the initial configuration, and the leaf nodes are

configurations for which we can compute the cost-to-go function.

In our case, we slightly modify the structure of a typical decision tree, in the sense

that chance nodes and decision nodes do not necessarily alternate. A chance node

is a configuration for which the target container is not known yet, and information

needs to be revealed (note that this only occurs at the beginning of each batch). A

decision node is a configuration for which the target container is known. Using our

notations, chance nodes correspond to (𝑦𝑤)𝑤=1,...,𝑊 and decision nodes correspond to

(𝑥𝑘)𝑘=1,...,𝐶 .

Let 𝑛 be a node corresponding to a configuration in the decision tree. Thus 𝑓(𝑛),

the cost-to-go function of 𝑛, is defined for all nodes 𝑛, and 𝑟(𝑛), the immediate cost

function of 𝑛, is well defined when 𝑛 is a decision node. We denote by 𝜆𝑛 the level

of 𝑛 in the decision tree, and define it as the number of containers remaining in

the configuration. We denote the lowest level of the tree by 𝜆* = min
𝑛∈𝑇𝑟𝑒𝑒

{𝜆𝑛}. It

corresponds to the level such that if 𝜆𝑛 = 𝜆*, 𝑓(𝑛) can be computed efficiently (the

empty configuration being an obvious candidate with a cost-to-go of 0). Moreover,

∙ If 𝑛 is a chance node, then there exists a unique 𝑤 ∈ {1, . . . ,𝑊} such that

𝜆𝑛 = 𝐶 − 𝐾𝑤 + 1. We denote by Ω𝑛 the set of offspring of 𝑛, each offspring

being a decision node corresponding to a realization of the random variables

𝜁𝐾𝑤 , . . . , 𝜁𝐾𝑤+𝐶𝑤−1, i.e., the full retrieval order of containers in batch 𝑤. Note

that 𝑛 has a priori |Ω𝑛| = 𝐶𝑤! offspring.

∙ If 𝑛 is a decision node, then 𝑟(𝑛) is well defined and is equal to the number of

containers blocking the target container in configuration 𝑛 (i.e., the (𝐶−𝜆𝑛+1)𝑡ℎ

container to be retrieved). We denote by Δ𝑛 the set of offspring of 𝑛, which

can either be chance nodes if there exists 𝑤 ∈ {1, . . . ,𝑊} such that 𝜆𝑛 + 1 =

𝐶 −𝐾𝑤 +1 or decision nodes otherwise. For the sake of simplicity, we compute

Δ𝑛 greedily by considering all feasible combinations of relocations of the 𝑟(𝑛)

containers blocking the target container in 𝑛. Note that |Δ𝑛| is of the order of

91

(𝑆 − 1)𝑟(𝑛), where 𝑆 is the number of stacks.

Equation (4.1) provides the relation to compute the cost-to-go by backtracking. For

all 𝑛 in the decision tree, we have

𝑓(𝑛) =

⎧⎪⎪⎨⎪⎪⎩
1

|Ω𝑛|
∑︁
𝑛𝑖∈Ω𝑛

𝑓(𝑛𝑖) , if n is a chance node,

𝑟(𝑛) + min
𝑛𝑖∈Δ𝑛

{𝑓(𝑛𝑖)} , if n is a decision node.
(4.3)

In the case in which the probability of each permutation (in each batch) is not

uniform, we mentioned that in practice, operators provide the probability of potential

orders for each batch. Given a chance node 𝑛 and one of its offspring 𝑛𝑖 ∈ Ω𝑛, this

input probability is exactly the probability that the actual retrieval order is the one

revealed in 𝑛𝑖. For a given node 𝑛, we denote these probabilities by (𝑝𝑛𝑖
)𝑛𝑖∈Ω𝑛

. In

this case, Equation (4.3) is replaced by:

𝑓(𝑛) =

⎧⎪⎪⎨⎪⎪⎩
∑︁
𝑛𝑖∈Ω𝑛

𝑝𝑛𝑖
𝑓(𝑛𝑖) , if n is a chance node,

𝑟(𝑛) + min
𝑛𝑖∈Δ𝑛

{𝑓(𝑛𝑖)} , if n is a decision node,

for all 𝑛 in the decision tree.

Figures 4-4 and 4-5 provide the description of the decision tree corresponding to

the example in Figure 4-2, using chance/decision nodes and configurations, respec-

tively. A chance node is depicted with a circle, and a decision node with a square.

To illustrate how to use Equation (4.3), we derive the calculations using the ex-

ample in Figure 4-4. Suppose that 𝑓(25) = 𝑓(26) = 𝑓(27) = 0.5 are known, then we

get 𝑓(17) = 𝑓(18) = 𝑓(19) = 0.5, 𝑓(07) = 𝑓(09) = 1.5, and 𝑓(08) = 2.5, leading to

𝑓(01) = 3.5. Similarly, by backtracking, we can compute 𝑓(02) = 𝑓(03) = 𝑓(04) = 1.5

and 𝑓(05) = 𝑓(06) = 2.5, giving us 𝑓(00) = 13/6.

As the example shows, considering the full decision tree can become intractable

even for small examples, hence quickly impossible for larger problems. As previously

mentioned, the number of decision offspring of a chance node scales with 𝐶𝑤!, and the

number of offspring of a decision node is of the order of (𝑆− 1)𝑟(𝑛). So the size of the

92

00

03 04 05 060201

090807 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

2625 27

Figure 4-4: Decision tree represented with nodes. The colored arrows represent dif-
ferent values of immediate cost, i.e., the number of containers blocking the target
container (dotted green: 0, dashed orange: 1, thick solid red: 2).

tree grows exponentially with the size of the problem. However, there exist general

and specific techniques to reduce substantially the size of this tree, as we discuss now.

First, there are suboptimal approaches. One way to approximate 𝑓(𝑛), when 𝑛 is

a chance node, is to sample from its offspring. When Ω𝑛 is large (which can happen

with large batches), one might sample a certain number of realizations, resulting in

a set of offspring Ψ𝑛 ⊂ Ω𝑛. By sampling “enough,” we show in Section 4.6, we can

ensure guarantees on expectation for such an algorithm. Another popular subopti-

mal approach is to use techniques from approximate dynamic programming. These

techniques can provide good empirical results, but no guarantee on how far from op-

timality can be obtained. This direction is not discussed in this chapter but can be

a direction for future work. Finally, another approach is to consider heuristics such

as the ones described in the next section, which select a subset of the offspring of

decision nodes, and lead to upper bounds on the optimal value 𝑓(0).

Second, there exist ways to decrease the size of the tree while ensuring optimality.

One is to reduce the number of nodes using the problem structure of the SCRP.

93

1
5 4

1 5 1

1
5 4

2 5 3

1
5 4

3 5 2

3
5 4

1 5 2

2○
5 4○

3 5 1

2
5 4

1 5 3

3○
5 4○

2 5 1

4
3○ 5
2 5

4○
3○ 5
2 5

3
4○ 5
2 5

2
5 4
5 3

5 4
2 5 3

5 4○
3 5 2

3○
5 4○
5 2

2
4 5
3 5

4
2 5
3 5

4○
2 5
3 5

3
5
5 4

5 3
5 4

4
5
5 3

5 4○
5 3

4○ 5
3 5

4
5

3 5
5

3 5 4

3
5

4 5

4
5
5

5
5 4

5
4 5

Figure 4-5: Decision tree represented with configurations. The colored arrows rep-
resent different values of immediate cost, i.e., the number of containers blocking the
target container (dotted green: 0, dashed orange: 1, thick solid red: 2). Red circled
numbers highlight containers blocking the target container.

94

5 4
5 3

4 5
3 5

4 5
3 5

5 4
5 3

5 4
5 3

4 5
3 5

Figure 4-6: Abstraction procedure.

In the online setting, Ku and Arthanari [43] propose an abstraction technique, that

significantly shrinks the size of the tree. Thanks to Assumption 𝐴*
4, we can consider

that the stacks of a configuration are interchangeable, making many configurations

equivalent in terms of number of relocations. For instance, in Figure 4-4, nodes 20

and 21 are identical in terms of number of relocations.

We describe the abstraction step with an example in Figure 4-6. The five con-

figurations at the top are all equivalent to the configuration at the bottom. The

abstraction transformation first ranks the stacks by increasing height. For stacks

with equal height, it breaks ties by ranking them lexicographically going from bot-

tom to top. Stacks are rearranged to have the first ranked on the left and the last on

the right. Ku and Arthanari [43] use a slightly different rule, and add the extra step

of removing empty stacks. Using the abstraction procedure, the proposed algorithm

should not generate nodes twice with identical abstracted versions. Even though Ku

and Arthanari [43] introduce this rule for the online model, this abstraction step also

applies in the batch setting. Throughout the rest of the chapter, we will refer in

pseudocode to the function Abstract(𝑛), when applying this method to a given

node 𝑛. We mention that Ku and Arthanari [43] also suggest caching strategies that

could be added on the top of this simplification step, including caching part of the

tree or using a transportation table.

95

Finally, the performance of a decision-tree-based algorithm depends on the explo-

ration strategy of the tree. For the online model, Ku and Arthanari [43] use depth-

first-search (DFS), and we propose to explore the best-first-search (BFS) approach.

Note that BFS requires some kind of measure that we define in Section 4.5.

In further sections, we explore two other ways to decrease the size of the tree while

still ensuring optimality. The first one is specific to the SCRP, and uses properties of

the problem to increase 𝜆*. Recall that 𝜆* is the minimum level of the tree at which

we can find the optimal expected number of relocations, without further branching.

We show that we can set 𝜆* to max{𝑆,𝐶𝑊}, where 𝑆 is the number of stacks, and

𝐶𝑊 is the number of containers in the last batch. Comparatively, Ku and Arthanari

[43] branch until 𝜆* = 0. The second optimal pruning strategy uses lower bounds in

a BFS scheme.

After we introduce the batch model for the SCRP (as well as the online model)

and some preliminary concepts about decision trees, the next three sections develop

approaches to solve the SCRP.

4.4 Heuristics and Lower Bounds

Before introducing the two main algorithms, we describe in this section heuristics

and lower bounds for the SCRP. Indeed, PBFS and PBFSA build upon some of these

bounds. In addition, these algorithms provide good intuition on how to solve the

SCRP.

Let 𝑛 be a given configuration with 𝑆 stacks and 𝑇 tiers. Recall that a Container

𝑐 is a blocking container in 𝑛 if it is stacked above at least one container which is to

be removed before 𝑐. Note that all the bounds mentioned below apply both in the

batch and online models.

4.4.1 Heuristics

For the sake of completeness of this chapter, we first describe three existing heuristics

used in proofs and/or our computational experiments before describing two novel

96

heuristics.

Existing heuristics

Random. For every relocation of a blocking Container 𝑐 from Stack 𝑠, the Random

heuristic picks any Stack 𝑠′ ̸= 𝑠 uniformly at random among stacks that are not “full,”

i.e., stacks containing strictly fewer than 𝑇 containers.

Leveling (L). For every relocation of a blocking Container 𝑐 from Stack 𝑠, L chooses

the Stack 𝑠′ ̸= 𝑠 currently containing the fewest of containers, breaking ties arbitrarily

by selecting such leftmost stack.

Heuristic L is interesting for several reasons. Most important, it is an intuitive

and commonly used heuristics in real operations in that it uses no more than the

height of each stack. It does not require any information about batches or departure

times, which means it is robust with respect to the inaccuracy of information. In

addition, it is optimal for any configurations with 𝑆 containers or fewer (see Section

4.5). Finally, we show strong evidence in the last computational experiment (see

Section 4.7) that this policy is optimal for the SCRP under the online model with a

unique batch (representing the case of no-information on the retrieval order).

Expected reshuffling index (ERI). This index-based heuristic was introduced

in [43] for the online model. For every relocation of a blocking Container 𝑐 from Stack

𝑠, ERI computes a score called the expected reshuffling index for each Stack 𝑠′ ̸= 𝑠

that is not full, denoted by 𝐸𝑅𝐼(𝑠′, 𝑐). ERI chooses the Stack 𝑠′ ̸= 𝑠 with the lowest

𝐸𝑅𝐼(𝑠′, 𝑐). In the case of a tie, the policy breaks it by selecting the highest stack

among the ones minimizing 𝐸𝑅𝐼(𝑠′, 𝑐). Further ties are arbitrarily broken by selecting

the leftmost stack verifying the two previous conditions. 𝐸𝑅𝐼(𝑠′, 𝑐) corresponds to

the expected number of containers in Stack 𝑠′ that depart earlier than 𝑐. Let 𝐻𝑠′ be

the current number of containers in 𝑠′. If 𝐻𝑠′ = 0, then 𝐸𝑅𝐼(𝑠′, 𝑐) = 0. Otherwise,

let (𝑐1, . . . , 𝑐𝐻𝑠′
) be the containers in 𝑠′, then 𝐸𝑅𝐼(𝑠′, 𝑐) =

𝐻𝑠′∑︁
𝑖=1

1 {𝑐𝑖 < 𝑐}+ 1 {𝑐𝑖 = 𝑐}
2

.

97

First new heuristic: expected minmax (EM)

EM considers an idea similar to the MinMax heuristic in [10] for the CRP. Let 𝑚𝑖𝑛(𝑠)

be the smallest label of a container in 𝑠 (𝑚𝑖𝑛(𝑠) = 𝐶 + 1, if Stack 𝑠 is empty). For

every relocation of a blocking Container 𝑐 from Stack 𝑠, we select the stack to which

we relocate 𝑐 using the following rules:

[Rule 1]: If there exists 𝑠′ ̸= 𝑠 such that 𝑚𝑖𝑛(𝑠′) > 𝑐, let

𝑀 = min
𝑠′∈{1,...,𝑆}∖𝑠

{min(𝑠′) : min(𝑠′) > 𝑐}.

Select a stack such that𝑚𝑖𝑛(𝑠′) =𝑀 , breaking ties by choosing from the highest

ones, finally taking the leftmost stack if any ties remain.

[Rule 2]: If for all Stacks 𝑠′ ̸= 𝑠, 𝑚𝑖𝑛(𝑠′) 6 𝑐, let

𝑀 = max
𝑠′∈{1,...,𝑆}∖𝑠

{min(𝑠′)}.

Select a stack such that 𝑚𝑖𝑛(𝑠′) = 𝑀 . If there are several such stacks, select

those with the minimum number of containers labeled 𝑀 . Further ties are

again broken by taking the highest ones, and finally choosing the leftmost one

arbitrarily.

Rule 1 says: if there is a stack where min(𝑠) is greater than 𝑐 (𝑐 can almost surely

avoid being relocated again), then choose such a stack where min(𝑠) is minimized,

since stacks with larger minimums can be useful for larger blocking containers.

If there is no stack satisfying min(𝑠) > 𝑐 (Rule 2), then we have two cases following

the same rule. On one hand, if 𝑀 = 𝑐, then 𝑀 is the maximum of the minimum

labels of each stack, and 𝑐 can potentially avoid being relocated again. If there are

several stacks that maximize the minimum label, then by selecting the one with the

fewest of containers labeled 𝑀 , EM minimizes the probability of 𝑐 being relocated

again. On the other hand, if 𝑀 < 𝑐, 𝑐 will almost surely be relocated again, then EM

chooses the stack where min(𝑠) is maximized to delay the next unavoidable relocation

98

2○
4
7
4 4 7
1 7 3

4 8 3
Rule 1

−→
4○
7 2
4 4 7
1 7 3

4 8 2
Rule 1

−→ 7○ 2
4 4 7
1 7 4 3

4 4 2
Rule 2

−→ 2
4○ 4 7 7
1 7 4 3

4 4 2
Rule 2

−→ 4 2
4 7 7

1 7 4 3

Figure 4-7: Decisions of the EM heuristic on an example with 5 tiers, 4 stacks,
and 9 containers (3 per batch). Under the batch model, the first batch has been
revealed and we present the decisions to retrieve the first container made by EM.
The container with the circled red label is the current blocking container. Numbers
under the configuration correspond to the stack indices 𝑚𝑖𝑛(𝑠). The underlined
green (respectively squared orange) indices correspond to the selected stack with the
corresponding 𝑀 when Rule 1 (respectively Rule 2) applies.

of 𝑐 as much as possible. We show how EM makes decision on a simple example in

Figure 4-7.

Second new heuristic: expected group assignment (EG)

EM is quite intuitive because it tries to minimize the number of blocking containers

after each retrieval. EG aims for the same goal, but uses some more sophisticated

rules (although, as shown in the experiments in Section 4.7, EG does not always

provide better solutions than EM). EG is inspired by a heuristic designed by Wu and

Ting [77] for the complete information case, and we generalize this idea to the SCRP.

It is different from ERI and EM because it considers a group of blocking containers

together, whereas ERI and EM consider them one at a time. EG can be decomposed

in two main phases for each retrieval. The decisions made by EG on the same example

as shown in Figure 4-7 are given in Figure 4-8.

The first phase assigns the blocking containers for which there exists 𝑠′ ̸= 𝑠 such

that 𝑚𝑖𝑛(𝑠′) > 𝑐. If this is not the case, the assignments of these containers will be

ignored during the first phase. The acceptable containers are assigned in descending

order of labels, i.e., the container with the highest label is assigned first (breaking

ties for the highest one first). To assign these acceptable containers, the first phase

applies the first of the EM rules. Finally, an acceptable container cannot be assigned

99

2
4
7○
4 4 7
1 7 3

4 8 3

−→

2
4○
4 4 7
1 7 7 3

4 × 2
Non-assigned

−→

2
4

4○ 4 7
1 7 7 3

4 7 2

−→

2○
4

4 4 7
1 7 7 3

4 × 3

−→
4

2
4 4 7

1 7 7 3

4-8a. First phase: EG assigns acceptable containers in descending order. The con-
tainer with the circled red label is the next acceptable container that EG tries to
assign to a stack. Containers with overlined blue labels are assigned, and with gray
labels are unassigned. Below, we show the indices 𝑚𝑖𝑛(𝑠) to apply the first rule of EM
(× means that a container below the considered container has already been assigned
to a stack).

4○
2

4 4 7
1 7 7 3

4 0 2

−→ 4 2
4 4 7

1 7 7 3

4-8b. Second Phase, EG assigns all unassigned containers using the index 𝐺𝑚𝑖𝑛(𝑠).

Figure 4-8: Decisions of the EG heuristic in an example with 5 tiers, 4 stacks, and 9
containers (3 in each batch). Under the batch model, the first batch has been revealed
and we present the two-phases decisions to retrieve the first container made by EG.

to a stack if there is a container below it that was previously assigned to this stack.

The assignment in the second phase for the blocking containers not yet assigned

might lead to additional relocations. These containers are assigned to other stacks in

ascending order of labels. The second phase first computes a modified 𝑚𝑖𝑛(𝑠′) index

for each stack denoted by 𝐺𝑚𝑖𝑛(𝑠′), which is defined as follows: Let 𝐻𝑠′ be the height

of Stack 𝑠′ and 𝐵(𝑠′) be the subset of containers assigned in the first phase to Stack

100

𝑠′,

𝐺𝑚𝑖𝑛(𝑠′) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1, if |𝐵(𝑠′)|+𝐻𝑠′ = 𝑇,

𝑚𝑖𝑛(𝑠′), if |𝐵(𝑠′)| = 0,

𝐵(𝑠′), if |𝐵(𝑠′)| = 1,

0, otherwise.

If a stack is full after we assign the containers during the first phase, then it

cannot be selected. If no container was assigned, the index remains as the 𝑚𝑖𝑛. If

one container was assigned, it is “artificially” the new minimum of the stack. Finally,

if more than one container was assigned, the index becomes very unattractive by

being as low as possible (0). The second phase is similar to the EM heuristic, but it

considers 𝐺𝑚𝑖𝑛 instead of the 𝑚𝑖𝑛 index, breaking ties identically. Note that, after

each assignment in the second phase, we update 𝐺𝑚𝑖𝑛 accordingly for the remaining

containers to be assigned. For more details in the complete information case, we refer

the reader to [77].

4.4.2 Lower Bounds

After defining heuristics (upper bounds), we are now concerned with defining valid

lower bounds for the SCRP. More specifically, we care about computing lower bounds

for decision nodes in the decision tree defined before. Note that the computation of

lower bounds easily extends to chance nodes.

Blocking lower bound

Suppose that the departure order is known, as in the CRP. The following lower bound

was introduced in [38] and is based on the following simple observation. If a container

is blocking in 𝑛, then it must be relocated at least once. Thus, the optimal number

of relocations is lower bounded by the number of blocking containers.

In the SCRP, the retrieval order is a random variable, so the fact that a container

is blocking is also random. Let us denote the expected number of blocking containers

101

in 𝑛 by 𝑏(𝑛). Note that this notation extends the notation of Chapter 3

which defines 𝑏(.) in the case where the order is known. Therefore, by taking

the expectation on the retrieval order of the previous fact, which holds for every

retrieval order, we have the following observation.

Observation 3. For all configurations 𝑛, 𝑓(𝑛) is the minimum expected number of

relocations to empty 𝑛, and 𝑏(𝑛) is the expected number of blocking containers, then

𝑓(𝑛) > 𝑏(𝑛).

Lemma 5 shows one way to compute the expected number of blocking containers

for one stack, and 𝑏(𝑛) is the sum of the expected number of blocking containers

of each stack of 𝑛. Mathematically, let 𝑏𝑠(𝑛) be the expected number of blocking

containers in Stack 𝑠 of 𝑛, we have 𝑏(𝑛) =
𝑆∑︁

𝑠=1

𝑏𝑠(𝑛).

Lemma 5. Let 𝑛 be a single stack configuration with 𝑇 tiers, and 𝐻 > 0 containers

(𝐻 6 𝑇). If 𝐻 = 0, we have

𝑏(𝑛) = 0.

If 𝐻 > 1, we denote the label of containers by (𝑐𝑖)𝑖=1,...,𝐻 , where 𝑐1 is the container

at the bottom and 𝑐𝐻 is the container at the top (see Figure 4-9), then we have:

𝑏(𝑛) = 𝐻 −
𝐻∑︁

ℎ=1

1

{︂
𝑐ℎ = min

𝑖=1,...,ℎ
{𝑐𝑖}

}︂
ℎ∑︁

𝑖=1

1 {𝑐ℎ = 𝑐𝑖}
,

where 1 {𝐴} is the indicator function of 𝐴.

Proof. Clearly, if 𝐻 = 0, then 𝑏(𝑛) = 0. If 𝐻 > 1, then by definition we have

𝑏(𝑛) = E

[︃
𝐻∑︁

ℎ=1

1 {𝑐ℎ is a blocking container}
]︃
=

𝐻∑︁
ℎ=1

P [𝑐ℎ is a blocking container] .

102

𝑐𝐻
...
𝑐2
𝑐1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
𝑇

Figure 4-9: Example of a single stack configuration.

Let us fix ℎ ∈ {1, . . . , 𝐻}, and compute the probability that 𝑐ℎ is blocking. We

consider two cases:

∙ If 𝑐ℎ > min
𝑖=1,...,ℎ

{𝑐𝑖}, then 𝑐ℎ is almost surely blocking.

∙ Otherwise 𝑐ℎ = min
𝑖=1,...,ℎ

{𝑐𝑖}, and there are
ℎ∑︁

𝑖=1

1 {𝑐ℎ = 𝑐𝑖} − 1 containers below

𝑐ℎ with the same label (or batch). Since each departure sequence between

containers of the same batch is equally likely, the probability that 𝑐ℎ is blocking

is equal to
∑︀ℎ

𝑖=1 1{𝑐ℎ=𝑐𝑖}−1∑︀ℎ
𝑖=1 1{𝑐ℎ=𝑐𝑖}

= 1− 1∑︀ℎ
𝑖=1 1{𝑐ℎ=𝑐𝑖}

.

Consequently, we get

P [𝑐ℎ is a blocking container]

= 1× 1

{︂
𝑐ℎ > min

𝑖=1,...,ℎ
{𝑐𝑖}

}︂
+
(︁
1− 1∑︀ℎ

𝑖=1 1{𝑐ℎ=𝑐𝑖}

)︁
× 1

{︂
𝑐ℎ = min

𝑖=1,...,ℎ
{𝑐𝑖}

}︂

= 1−
1

{︃
𝑐ℎ = min

𝑖=1,...,ℎ
{𝑐𝑖}

}︃
∑︀ℎ

𝑖=1 1{𝑐ℎ=𝑐𝑖}
.

We sum the above expression for ℎ = 1, . . . , 𝐻 to conclude the proof.

Therefore, one can compute the blocking lower bound as follows: let 𝐻𝑠 be the

number of containers in Stack 𝑠, and (𝑐𝑠1, . . . , 𝑐
𝑠
𝐻𝑠) be the containers in Stack 𝑠 listed

103

from bottom to top, then

𝑏(𝑛) =
∑︁

𝑠=1,...,𝑆
𝐻𝑠>1

⎛⎜⎜⎜⎜⎜⎝𝐻𝑠 −
𝐻𝑠∑︁
ℎ=1

1

{︂
𝑐𝑠ℎ = min

𝑖=1,...,ℎ
{𝑐𝑠𝑖}

}︂
ℎ∑︁

𝑖=1

1 {𝑐𝑠ℎ = 𝑐𝑠𝑖}

⎞⎟⎟⎟⎟⎟⎠ . (4.4)

Non-uniform case. In the case where probabilities are not uniform across retrieval

orders, we still consider a similar lower bound. For each Container 𝑐𝑠ℎ, let 𝑞𝑐𝑠ℎ be the

probability that 𝑐𝑠ℎ is the first container to be retrieved among the ones with the same

batch, and positioned below in its stack. Equation (4.4) extends to give:

𝑏(𝑛) =
∑︁

𝑠=1,...,𝑆
𝐻𝑠>1

(︃
𝐻𝑠 −

𝐻𝑠∑︁
ℎ=1

𝑞𝑐𝑠ℎ1

{︂
𝑐𝑠ℎ = min

𝑖=1,...,ℎ
{𝑐𝑠𝑖}

}︂)︃
.

Look-ahead lower bounds

Note that the blocking lower bound 𝑏 is only taking into account the current config-

uration. However, some relocations lead necessarily to an additional relocation. As

in Chapter 3, we refer to such relocations as “bad.” Formally, let 𝑠 be a stack of a

configuration, and min(𝑠) be the smallest label of a container in 𝑠. Recall that, if 𝑠 is

empty, we set min(𝑠) = 𝐶 + 1. We say that the relocation of Container 𝑐 from Stack

𝑠 is “bad” if 𝑐 > max
𝑠′=1,...,𝑆 , 𝑠′ ̸=𝑠

{min(𝑠′)}. We propose to construct a lower bound that

anticipates “bad” relocations.

The basic idea is based on a similar one used in [87] for the CRP. We consider

the first look-ahead lower bound denoted by 𝑏1(𝑛). By definition we take 𝑏1(𝑛) =

𝑏(𝑛) + 𝑑1(𝑛), where 𝑏(𝑛) is the blocking lower bound, and 𝑑1(𝑛) is the expected

number of unavoidable “bad” relocations while performing the first removal. We

compute the term 𝑑1(𝑛) by considering all realizations of the first target container.

For each realization, we compute the number of unavoidable “bad” relocations and

average them. Formally, for a given configuration 𝑛, consider 𝑈𝑛 the set of potential

next target container in 𝑛 (which can be a singleton if it is known already), i.e.,

104

𝑈𝑛 =

{︂
𝑐

⃒⃒⃒⃒
𝑐 = min

𝑠=1,...,𝑆
(𝑚𝑖𝑛(𝑠))

}︂
. Based on the definition of a bad relocation, we

compute the number of unavoidable “bad” moves for each 𝑢 ∈ 𝑈𝑛 denoted by 𝛽(𝑛, 𝑢),

and we take:

𝑑1(𝑛) =
1

|𝑈𝑛|
∑︁
𝑢∈𝑈𝑛

𝛽(𝑛, 𝑢),

or 𝑑1(𝑛) =
∑︀

𝑢∈𝑈𝑛
𝑝𝑛,𝑢𝛽(𝑛, 𝑢), where 𝑝𝑛,𝑢 is the probability that 𝑢 is the next target

container in 𝑛 if the probabilities considered are not uniform (which can be computed

using (𝑝𝑛𝑖
)𝑛𝑖∈Ω𝑛

if 𝑛 is a chance node).

4
3

1 3 1

Figure 4-10: Example for look-ahead lower bounds.

For example, in Figure 4-10, the presented configuration denoted by 𝑛 is such that

𝑏(𝑛) = 2. Now consider a container 𝑢 ∈ 𝑈𝑛: if 𝑢 is the container labeled 1 in Stack 1,

then there is no blocking container, so 𝛽(𝑛, 𝑢) = 0; if 𝑢 is the other container labeled

1, the relocation of the container labeled 4 from Stack 3 is necessarily a bad reloca-

tion, since 𝑚𝑖𝑛(1) = 1 < 4 and 𝑚𝑖𝑛(2) = 3 < 4, but it is not the case for the blocking

container labeled by three, hence 𝛽(𝑛, 𝑢) = 1. Therefore, 𝑑1(1) = 0.5(0 + 1) = 0.5,

and 𝑏1(𝑛) = 2 + 0.5 = 2.5, hence giving a lower bound closer to the optimal solution

than 𝑏(𝑛). Note that, if 𝑛 has an empty stack, then 𝛽(𝑛, 𝑢) = 0 for all 𝑢 ∈ 𝑈𝑛, hence

𝑑1(𝑛) = 0.

We can refine this idea by trying to find unavoidable “bad” relocations for the

second removal. In this case, the configuration depends on the first removal and the

decisions that have been made accordingly. For the sake of clarity, consider that

the first target container has been revealed, and denote it 𝑢1. After retrieving 𝑢1,

only containers blocking 𝑢1 have changed from their initial position. It can be very

challenging to detect future unavoidable “bad” moves for these containers. To bypass

this issue, we consider that all containers blocking 𝑢1 are also removed, resulting in

105

a configuration without 𝑢1 and its blocking containers. Given this new configuration

denoted by 𝑛(𝑢1), we can compute the expected number of unavoidable bad moves

𝑑1(𝑛(𝑢1)). Since 𝑢1 is actually random, we have to consider each scenario with its

associated probability and compute a new configuration where blocking containers

are retrieved with the target container. We denote the result 𝑑2(𝑛), and it is a

lower bound on the expected number of unavoidable bad relocations for the first

two removals starting at 𝑛. Finally, our second look-ahead lower bound is given by

𝑏2(𝑛) = 𝑏(𝑛) + 𝑑2(𝑛).

Algorithm 1 Lower bound on number of unavoidable bad relocations for 𝑘 first removals.

1: procedure [𝑑𝑘(𝑛)] = UnavoidableBadReloc (𝑛, 𝑘)
2: if 𝑘 = 0 or 𝑛 has an empty stack or 𝑛 is empty then 𝑑𝑘(𝑛) = 0
3: else let 𝑈𝑛 = {containers with minimum label in n}
4: if 𝑘 = 1 then 𝑑𝑘(𝑛) =

1
|𝑈𝑛|

∑︀
𝑢∈𝑈𝑛

𝛽(𝑛, 𝑢)
5: else
6: for 𝑢 ∈ 𝑈𝑛 do
7: Let 𝑛(𝑢) be the configuration 𝑛 without 𝑢 and all containers blocking 𝑢
8: Compute recursively 𝑑𝑘−1 (𝑛(𝑢)) = UnavoidableBadReloc (𝑛(𝑢), 𝑘 − 1)

9: Compute 𝑑𝑘(𝑛) = 1
|𝑈𝑛|

∑︀
𝑢∈𝑈𝑛

𝛽(𝑛, 𝑢) + 𝑑𝑘−1 (𝑛(𝑢))

This idea can easily be generalized for 𝑘 > 2 by induction with 𝑏𝑘(𝑛) = 𝑏(𝑛) +

𝑑𝑘(𝑛). Here 𝑘 is the number of removals that the lower bound considers to compute

the expected number of unavoidable bad relocations (see pseudocode of Algorithm

1). We mention that we only use the first and second look ahead lower bounds in

our computational experiments. However, note that, as 𝑘 grows, the computational

complexity clearly increases, whereas experiments reveal that the marginal increase

of the lower bound, i.e., 𝑏𝑘+1(𝑛)− 𝑏𝑘(𝑛) > 0, decreases.

4.5 PBFS, a New Optimal Algorithm for the SCRP

Building upon lower bounds introduced in the previous section, this section intro-

duces, studies, and proves the optimality of one of the main contributions of this

chapter, the PBFS Algorithm.

106

4.5.1 PBFS Algorithm

We start by giving the pseudocode of our algorithm, and we derive its optimality in

Lemmas 6 and 7. PBFS takes two inputs, the configuration 𝑛 for which we aim to

compute 𝑓(𝑛), and a valid lower bound 𝑙. This algorithm uses a combination of four

features to return 𝑓(𝑛). The first one is the BFS exploration of the tree based on

a given lower bound 𝑙. We first compute 𝑓 for the “most promising nodes,” because

nodes with small lower bounds are more likely to result in small 𝑓 . The second

technique is stopping to compute 𝑓 recursively after level 𝜆* = max{𝑆,𝐶𝑊}, by

calculating it either using 𝑏 or the 𝐴* algorithm defined later. In Algorithm 2, 𝐴*(𝑛)

denotes the optimal number of relocations for node 𝑛 obtained using the 𝐴* algorithm.

The third feature is pruning with a lower bound, revealing the sub-optimality of some

nodes without actually computing 𝑓 . As its fourth feature, the algorithm also uses

the abstraction technique described previously.

Algorithm 2 PBFS Algorithm
1: procedure [𝑓(𝑛)] = 𝑃𝐵𝐹𝑆 (𝑛, 𝑙)
2: if 𝜆𝑛 6 𝑆 (𝑛 has fewer than 𝑆 containers) then 𝑓(𝑛) = 𝑏(𝑛)
3: else
4: if 𝑛 is a chance node then start with Ψ𝑃𝐵𝐹𝑆

𝑛 = {}
5: for 𝑛𝑖 ∈ Ω𝑛 do 𝑛𝑖 ← Abstract(𝑛𝑖)
6: if there exists 𝑚 = 𝑛𝑖 already in Ψ𝑃𝐵𝐹𝑆

𝑛 then 𝑝𝑛𝑚 ← 𝑝𝑛𝑚 + 1
|Ω𝑛|

7: else if there exists 𝑚 = 𝑛𝑖 in decision tree then add 𝑚 to Ψ𝑃𝐵𝐹𝑆
𝑛 and 𝑝𝑛𝑚 = 1

|Ω𝑛|
8: else add 𝑛𝑖 to Ψ𝑃𝐵𝐹𝑆

𝑛 , 𝑝𝑛𝑛𝑖
= 1

|Ω𝑛| and compute 𝑓(𝑛𝑖) = 𝑃𝐵𝐹𝑆 (𝑛𝑖, 𝑙)

9: Compute 𝑓(𝑛) =
∑︁

𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆
𝑛

𝑝𝑛𝑛𝑖
𝑓(𝑛𝑖)

10: else 𝑛 is a decision node
11: if 𝜆𝑛 = 𝐶𝑊 (the full retrieval order is known) then 𝑓(𝑛) = 𝐴*(𝑛)
12: else construct Δ𝑛 from all feasible sets of decisions to deliver the target container
13: Compute 𝑙(𝑛𝑖) for each 𝑛𝑖 ∈ Δ𝑛

14: Sort
(︀
𝑛(1), 𝑛(2), . . . , 𝑛(|Δ𝑛|)

)︀
in nondecreasing order of 𝑙(.)

15: Compute 𝑓(𝑛(1)) = 𝑃𝐵𝐹𝑆
(︀
𝑛(1), 𝑙

)︀
16: Start with Γ𝑃𝐵𝐹𝑆

𝑛 = {𝑛(1)} and 𝑘 = 2

17: while 𝑘 6 |Δ𝑛| and 𝑙(𝑛(𝑘)) < min
𝑗=1,...,𝑘−1

{︀
𝑓(𝑛(𝑗))

}︀
do 𝑛(𝑘) ← Abstract(𝑛(𝑘))

18: if there exists 𝑚 = 𝑛(𝑘) already in the decision tree then add 𝑚 to Γ𝑃𝐵𝐹𝑆
𝑛

19: else add 𝑛(𝑘) to Γ𝑃𝐵𝐹𝑆
𝑛 and compute 𝑓(𝑛(𝑘)) = 𝑃𝐵𝐹𝑆

(︀
𝑛(𝑘), 𝑙

)︀
20: Update 𝑘 = 𝑘 + 1

21: 𝑓(𝑛) = 𝑟(𝑛) + min
𝑛𝑖∈Γ𝑃𝐵𝐹𝑆

𝑛

{𝑓(𝑛𝑖)}

107

Decreasing the size of decision tree by increasing 𝜆* to max{𝑆,𝐶𝑊}

If 𝐶𝑊 6 𝑆, then compute f(n) using b(n). Recall that, for every relocation,

heuristic L chooses the stack with the fewest of containers, breaking ties arbitrarily

by choosing the leftmost one. Note that L always provides a valid upper bound for

the SCRP. So if we denote the resulting expected number of relocations to empty

configuration 𝑛 using L by 𝑓𝐿(𝑛), then we have 𝑓𝐿(𝑛) > 𝑓(𝑛).

Lemma 6. Let 𝑛 be a configuration with 𝑆 stacks, 𝑇 tiers, and 𝐶 containers such

that 𝐶 6 𝑆, then we have

𝑓𝐿(𝑛) = 𝑏(𝑛) = 𝑓(𝑛)

Proof. Consider a retrieval order of containers from 𝑛 that has a nonzero probability

of occurring. We now apply and explain Observation 2: If there are no blocking

containers, then the lemma clearly holds. Otherwise, let 𝑐 be one of the blocking

containers for this retrieval order, and consider the first removal for which 𝑐 has to be

relocated. For this removal, there are at most 𝑆 containers in the configuration, hence

there exists at least one empty stack to relocate 𝑐. Since heuristic L chooses always

empty stacks if one exists, L would move 𝑐 to one of the existing empty stacks. Note

that in this case, 𝑐 will never be blocking again, hence will never be relocated again.

This observation holds for any blocking containers, thus L relocates each blocking

container at most once.

Since this fact holds for any retrieval orders with nonzero probability, by taking

expectation on the retrieval order, we have 𝑓𝐿(𝑛) 6 𝑏(𝑛), thus 𝑓𝐿(𝑛) 6 𝑏(𝑛) 6 𝑓(𝑛) 6

𝑓𝐿(𝑛), which concludes the proof.

Lemma 6 states that for configurations with 𝑆 containers or fewer, heuristic L is

optimal for the SCRP. This implies that, for nodes at level 𝑆, we have access to the

cost-to-go function using 𝑏(𝑛), as well as an optimal solution (provided by heuristic

L). Hence PBFS can stop branching at 𝜆* = 𝑆 (line 2 of Algorithm 2).

108

If 𝐶𝑊 > 𝑆, then compute f(n) using the 𝐴* algorithm. If 𝑛 is a decision

node at level 𝐶𝑊 , the full order of retrieval is known, and computing 𝑓(𝑛) reduces to

solving a classical CRP, so we can leverage the existence of efficient solutions to the

classical CRP such as the 𝐴* algorithm, and take 𝜆* = 𝐶𝑊 . Throughout the rest of

the chapter, 𝐴* refers to the improved version of this algorithm presented in [4] and

we denote the optimal number of relocations obtained by 𝐴*(𝑛) (line 11 of Algorithm

2).

Combining with the two previous observations, we can take 𝜆* = max{𝑆,𝐶𝑊}.

Decreasing the size of decision tree by pruning using lower bounds

We would also like to reduce the size of the tree before level 𝜆*. For a decision node

𝑛, PBFS considers only a subset Γ𝑃𝐵𝐹𝑆
𝑛 of all the offspring Δ𝑛 (line 21 of Algorithm

2). Our goal is to set Γ𝑃𝐵𝐹𝑆
𝑛 to still guarantee optimality.

𝑛

𝑛(|Γ𝑃𝐵𝐹𝑆
𝑛 |). . .𝑛(1) 𝑛(|Γ𝑃𝐵𝐹𝑆

𝑛 |+1) . . . 𝑛(|Δ𝑛|)

𝑙
(︀
𝑛(|Γ𝑃𝐵𝐹𝑆

𝑛 |)
)︀

6 . . . 6𝑙
(︀
𝑛(1)

)︀
𝑙
(︀
𝑛(|Γ𝑃𝐵𝐹𝑆

𝑛 |+1)

)︀
6 . . . 6 𝑙

(︀
𝑛(|Δ𝑛|)

)︀
𝑓
(︀
𝑛(|Γ𝑃𝐵𝐹𝑆

𝑛 |)
)︀

. . .𝑓
(︀
𝑛(1)

)︀
× . . . ×

Figure 4-11: Illustration of the pruning rule. First, offspring are ordered by nonde-
creasing lower bounds. Then we start computing the objective function starting at
𝑛(1). We stop computing the objective functions once the pruning rule is reached. In
the figure above, green nodes linked with full green arrows are nodes in Γ𝑃𝐵𝐹𝑆

𝑛 , i.e.,
𝑓(.) has been computed. Orange nodes linked with dashed orange arrows are nodes
in Δ𝑛 ∖ Γ𝑃𝐵𝐹𝑆

𝑛 , i.e., 𝑓(.) does not need to be computed which is represented here by
×.

First, PBFS generates all nodes 𝑛𝑖 ∈ Δ𝑛 by considering all feasible sets of decisions

to deliver the target container in 𝑛 (line 12 of Algorithm 2), and for each of them,

109

compute a lower bound 𝑙(𝑛𝑖), where 𝑙 is the input lower bound (line 13 of Algorithm

2). Let
(︀
𝑛(1), 𝑛(2), . . . , 𝑛(|Ω𝑛|)

)︀
be the list of offspring of 𝑛 sorted by nondecreasing

lower bound (line 14 of Algorithm 2). The algorithm considers first 𝑛(1), adds it

to Γ𝑃𝐵𝐹𝑆
𝑛 and computes 𝑓(𝑛(1)) recursively (lines 15-16 of Algorithm 2). Then for

𝑘 > 2, we consider 𝑛(𝑘)’s sequentially and check if 𝑙(𝑛(𝑘)) < min
𝑗=1,...,𝑘−1

{︀
𝑓(𝑛(𝑗))

}︀
(line

17 of Algorithm 2). If so, add 𝑛(𝑘) to Γ𝑃𝐵𝐹𝑆
𝑛 and compute 𝑓(𝑛(𝑘)) recursively. If not,

we stop branching on all nodes 𝑛(𝑘), . . . , 𝑛(|Ω𝑛|). An illustration of the pruning rule is

shown in Figure 4-11 and the next lemma shows the optimality of this rule.

Lemma 7. Let 𝑛 be a decision node in the decision tree, and Γ𝑃𝐵𝐹𝑆
𝑛 be the subset

of nodes considered for this node in Algorithm 2, and constructed as aforementioned,

then we have

min
𝑚𝑖∈Γ𝑃𝐵𝐹𝑆

𝑛

{𝑓(𝑚𝑖)} = min
𝑛𝑖∈Δ𝑛

{𝑓(𝑛𝑖)} .

Proof. Let
(︀
𝑛(1), 𝑛(2), . . . , 𝑛(|Ω𝑛|)

)︀
be the list of offspring of 𝑛, sorted by nondecreasing

lower bounds. We consider two cases.

∙ If Γ𝑃𝐵𝐹𝑆
𝑛 = Δ𝑛, the statement clearly holds.

∙ Otherwise, there exists 𝑘 6 |Δ𝑛| such that 𝑙(𝑛(𝑘)) > min
𝑗=1,...,𝑘−1

{︀
𝑓(𝑛(𝑗))

}︀
, and

Γ𝑃𝐵𝐹𝑆
𝑛 =

{︀
𝑛(1), . . . , 𝑛(𝑘−1)

}︀
. Note that we have ∀𝑘′ > 𝑘, 𝑓(𝑛(𝑘′)) > 𝑙(𝑛(𝑘′)) >

𝑙(𝑛(𝑘)) > min
𝑗=1,...,𝑘−1

{︀
𝑓(𝑛(𝑗))

}︀
. Hence

min
𝑛𝑖∈Δ𝑛

{𝑓(𝑛𝑖)} = min
𝑗=1,...,𝑘−1

{︀
𝑓(𝑛(𝑗))

}︀
= min

𝑚𝑖∈Γ𝑃𝐵𝐹𝑆
𝑛

{𝑓(𝑚𝑖)} .

We claim that increasing 𝜆* to max{𝑆,𝐶𝑊} together with pruning in a Best-

First-Search scheme, dramatically helps the efficiency of PBFS while guaranteeing

optimality. In the case of small batches, the PBFS algorithm appears to be efficient

(see Section 4.7). However, this algorithm faces the issue that |Ω𝑛| = 𝐶𝑤! if 𝑛 is a

chance node. So if Cw is large, typically Cw > 4, the number of nodes to consider

110

gets too large. We tackle this issue by considering a near-optimal algorithm in the

next section.

As a final remark, we note that batches should be as small as possible if only

information is at stake. Indeed, smaller batches correspond to an efficient information

system since more information is known about the retrieval order. But the size of

batches is restricted by two intrinsic constraints:

1. Batches should be at least larger than a certain size. Indeed, a terminal

offers time slots for trucks to register, and these slots cannot be too brief, as

trucks would most certainly not arrive during their appointed slot due to traffic

or other uncertain factors. Therefore, given the minimum time of a slot, the

terminal will allow at least a certain number of trucks to register for each slot,

i.e., the minimum batch size.

2. Batches cannot be too large for the batch model to be applicable, since in

this model, the appointment time windows are supposed to be the same as or

shorter than the target waiting time. As the target waiting time is limited, only

a limited number of containers can be retrieved in a certain batch.

This leads us to consider an alternative to PBFS (see Section 4.6) in the case of larger

batches.

4.6 PBFSA, Near-Optimal Algorithm with Guaran-

tees for Large Batches

Building upon PBFS introduced in the previous section, this section describes the

randomized algorithm PBFSA and shows some theoretical guarantees on expectation.

This new algorithm is identical to PBFS except when computing the value function

of a chance node (lines 4 to 17 of Algorithm 3). To decrease the number of decision

offspring to consider for each chance node, we sample a certain number of i.i.d.

permutations and only consider the decision nodes associated with these permutations

111

as illustrated in Figure 4-12. In particular, PBFSA uses 𝑓𝑚𝑖𝑛(.) and 𝑓𝑚𝑎𝑥(.), lower

and upper bound functions on 𝑓(.) for offspring of chance nodes. In this paper, we use

certain 𝑓𝑚𝑖𝑛(.) and 𝑓𝑚𝑎𝑥(.) defined in Equations (4.9)-(4.10), although others could

be used. Combined with the fact that our problem has a finite number of sampling

stages, this allows us to independently sample nodes to approximate the objective

function. Using concentration inequalities, we can choose the number of samples

needed to control the approximation error.

Algorithm 3 PBFSA Algorithm

1: procedure [𝑓(𝑛)] = 𝑃𝐵𝐹𝑆𝐴 (𝑛, 𝑙, 𝜖)
2: if 𝜆𝑛 6 𝑆 then 𝑓(𝑛) = 𝑏(𝑛)
3: else
4: if 𝑛 is a chance node then Ψ𝑃𝐵𝐹𝑆𝐴

𝑛 = {}. Let 𝑤𝑚𝑖𝑛 be such that 𝜆𝑛 = 𝐶 −𝐾𝑤𝑚𝑖𝑛
+ 1

5: Compute 𝛿𝑛 = min
{︀
𝑤 ∈ {𝑤𝑚𝑖𝑛, . . . ,𝑊}

⃒⃒∑︀𝑤
𝑢=𝑤𝑚𝑖𝑛

𝐶𝑢 > 𝜆𝑛 − 𝜆*
}︀

to get 𝜖𝑛 =
𝜖

𝛿𝑛

6: Set 𝑓𝑚𝑎𝑥(𝑛), 𝑓𝑚𝑖𝑛(𝑛) from (4.9)-(4.10) to get 𝑁𝑛(𝜖𝑛) =
𝜋 (𝑓𝑚𝑎𝑥(𝑛)− 𝑓𝑚𝑖𝑛(𝑛))

2

2𝜖2𝑛
7: if 𝑁𝑛(𝜖𝑛) 6 𝐶𝑤𝑚𝑖𝑛 ! then
8: for 𝑖 = 1, . . . , 𝑁𝑛(𝜖𝑛) do
9: Sample a random permutation to get 𝑛𝑖 ∈ Ω𝑛 and 𝑛𝑖 ← Abstract(𝑛𝑖)

10: if there is 𝑚 = 𝑛𝑖 already in Ψ𝑃𝐵𝐹𝑆𝐴
𝑛 then 𝑝𝑛𝑚 ← 𝑝𝑛𝑚 + 1

𝑁𝑛(𝜖𝑛)

11: else if there is 𝑚 = 𝑛𝑖 in decision tree then add 𝑚 to Ψ𝑃𝐵𝐹𝑆𝐴
𝑛 , 𝑝𝑛𝑚 = 1

𝑁𝑛(𝜖𝑛)

12: else add 𝑛𝑖 to Ψ𝑃𝐵𝐹𝑆𝐴
𝑛 , 𝑝𝑛𝑛𝑖

= 1
𝑁𝑛(𝜖𝑛)

and 𝑓(𝑛𝑖) = 𝑃𝐵𝐹𝑆𝐴 (𝑛𝑖, 𝑙, 𝜖− 𝜖𝑛)
13: else
14: for 𝑛𝑖 ∈ Ω𝑛 do 𝑛𝑖 ← Abstract(𝑛𝑖)
15: if there exists 𝑚 = 𝑛𝑖 already in Ψ𝑃𝐵𝐹𝑆𝐴

𝑛 then 𝑝𝑛𝑚 ← 𝑝𝑛𝑚 + 1
|Ω𝑛|

16: else if there is 𝑚 = 𝑛𝑖 in decision tree then add 𝑚 to Ψ𝑃𝐵𝐹𝑆𝐴
𝑛 and 𝑝𝑛𝑚 = 1

|Ω𝑛|

17: else add 𝑛𝑖 to Ψ𝑃𝐵𝐹𝑆𝐴
𝑛 , 𝑝𝑛𝑛𝑖

= 1
|Ω𝑛| and 𝑓(𝑛𝑖) = 𝑃𝐵𝐹𝑆𝐴 (𝑛𝑖, 𝑙, 𝜖− 𝜖𝑛)

18: Compute 𝑓(𝑛) =
∑︁

𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆𝐴
𝑛

𝑝𝑛𝑛𝑖
𝑓(𝑛𝑖)

19: else 𝑛 is a decision node
20: if 𝜆𝑛 6 𝐶𝑊 then 𝑓(𝑛) = 𝐴*(𝑛)
21: else Construct Δ𝑛 from all feasible sets of decisions to deliver the target container
22: Compute 𝑙(𝑛𝑖) for each 𝑛𝑖 ∈ Δ𝑛

23: Sort
(︀
𝑛(1), 𝑛(2), . . . , 𝑛(|Δ𝑛|)

)︀
in nondecreasing order of 𝑙(.)

24: Compute 𝑓(𝑛(1)) = 𝑃𝐵𝐹𝑆𝐴
(︀
𝑛(1), 𝑙, 𝜖

)︀
25: Start with Γ𝑃𝐵𝐹𝑆𝐴

𝑛 = {𝑛(1)} and 𝑘 = 2

26: while 𝑘 6 |Δ𝑛| and 𝑙(𝑛(𝑘)) < min
𝑗=1,...,𝑘−1

{︁
𝑓(𝑛(𝑗))

}︁
do 𝑛(𝑘) ← Abstract(𝑛(𝑘))

27: if there exists 𝑚 = 𝑛(𝑘) already in the decision tree then add 𝑚 to Γ𝑃𝐵𝐹𝑆𝐴
𝑛

28: else add 𝑛(𝑘) to Γ𝑃𝐵𝐹𝑆𝐴
𝑛 and compute 𝑓(𝑛(𝑘)) = 𝑃𝐵𝐹𝑆𝐴

(︀
𝑛(𝑘), 𝑙, 𝜖

)︀
29: Update 𝑘 = 𝑘 + 1

30: 𝑓(𝑛) = 𝑟(𝑛) + min
𝑛𝑖∈Γ𝑃𝐵𝐹𝑆𝐴

𝑛

{︁
𝑓(𝑛𝑖)

}︁

112

Since we perform a sampling at each chance node, PBFSA incurs an approximation

error at each chance node. Lemma 8 proves that the total approximation error at the

root node is on average the sum of all approximation errors from the root node to

any leaf node. Therefore, consider a node 𝑛, then 𝛿𝑛 is the number of chance nodes

between 𝑛 and any leaf node in the decision tree. If the target error is 𝜖 at node

𝑛, PBFSA “allocates” evenly the remaining error to the next chance nodes, giving

𝜖𝑛 = 𝜖
𝛿𝑛

error at each remaining chance node where sampling occurs.

1
5 4

1 5 1

𝑛

. . .𝑛𝑁𝑛(𝜖𝑛)

𝑓
(︀
𝑛𝑁𝑛(𝜖𝑛)

)︀. . .𝑛1

𝑓 (𝑛1)

𝑛𝑖

×

. . . 𝑛|Ω𝑛|

×

Figure 4-12: Illustration of the sampling rule. In this figure, the smallest batch is
batch 1; therefore 𝑤𝑚𝑖𝑛 = 1, and there are 6 containers, thus 𝜆𝑛 = 6. We have
𝜆* = 3 so 𝛿𝑛 = 1, and thus 𝜖𝑛 = 𝜖. These values allow us to compute the number
of samples required 𝑁𝑛(𝜖𝑛). If 𝑁𝑛(𝜖𝑛) in less than the total number of offspring
|Ω𝑛| = 𝐶𝑤𝑚𝑖𝑛

! = 3!, then we only compute 𝑓(.) for sampled nodes. Ψ𝑃𝐵𝐹𝑆𝐴
𝑛 represents

the subset of sampled nodes colored green and linked with full green arrows, and for
which 𝑓(.) needs to be computed. Note that

⃒⃒
Ψ𝑃𝐵𝐹𝑆𝐴

𝑛

⃒⃒
= 𝑁𝑛(𝜖𝑛). Orange nodes

linked with dashed orange arrows are nodes in Ω𝑛 ∖ Ψ𝑃𝐵𝐹𝑆𝐴
𝑛 , i.e., there were not

sampled and 𝑓(.) does not need to be computed which is represented here by ×.
Finally, the approximate value of 𝑓(𝑛) is the average of the objective values over all
sampled nodes.

Formally, let 𝑛 be a given chance node, recall that PBFS computes 𝑓(𝑛) =
1

|Ω𝑛|
∑︁
𝑛𝑖∈Ω𝑛

𝑓(𝑛𝑖), where each 𝑛𝑖 ∈ Ω𝑛 represents one retrieval order (a random permu-

tation) of batch 𝑤 (if 𝜆𝑛 = 𝐶 −𝐾𝑤 + 1). Instead, PBFSA computes the number of

chance nodes between 𝑛 and a leaf node denoted by 𝛿𝑛. If 𝜖 is the target error at node

𝑛, the algorithm allocates 𝜖𝑛 = 𝜖
𝛿𝑛

error for sampling at node 𝑛 and the remaining

113

(i.e., 𝜖 − 𝜖𝑛) to its offspring (lines 12 and 17 of Algorithm 3). Using 𝜖𝑛, we compute

𝑁𝑛(𝜖𝑛) and obtain a subset Ψ𝑛 ⊂ Ω𝑛 from 𝑁𝑛(𝜖𝑛) offspring drawn i.i.d. uniformly

from Ω𝑛. The important part is to define 𝑁𝑛(𝜖𝑛), such that 𝑓(𝑛) =
1

|Ψ𝑛|
∑︁
𝑚∈Ψ𝑛

𝑓(𝑚)

is a “good” approximation of 𝑓(𝑛), i.e.,
⃒⃒⃒
𝑓(𝑛)− 𝑓(𝑛)

⃒⃒⃒
is bounded by 𝜖 on average.

Note that if 𝑁𝑛(𝜖𝑛) > 𝐶𝑤𝑚𝑖𝑛
!, we would need to sample more elements than the total

number of offspring of 𝑛, and thus we do not sample (lines 14-17 of Algorithm 3).

PBFSA takes three input arguments, the configuration 𝑛 for which we want to

evaluate 𝑓 , a valid lower bound 𝑙 and an upper bound 𝜖 > 0 on the total expected “er-

ror” ensured by the algorithm. It outputs 𝑓(𝑛), which is a randomized approximation

of 𝑓(𝑛). Because of the samplings performed in line 9 in Algorithm 3, the output of

PBFSA is random. The average error incurred by the algorithm is E
[︁⃒⃒⃒
𝑓(𝑛)− 𝑓(𝑛)

⃒⃒⃒]︁
,

where the expectation is taken over the aforementioned samplings. Our main re-

sult (Lemma 8) states that PBFSA ensures E
[︁⃒⃒⃒
𝑓(𝑛)− 𝑓(𝑛)

⃒⃒⃒]︁
6 𝜖, in other words,

PBFSA guarantees an average error of at most 𝜖. The proof of Lemma 8 can be found

in Appendix.

Lemma 8. Let 𝑛 be a configuration with 𝜆𝑛 > 0 containers, 𝑙 be a valid lower bound

function, and 𝜖 > 0. If 𝑓(𝑛) = 𝑃𝐵𝐹𝑆𝐴(𝑛, 𝑙, 𝜖), then

E
[︁⃒⃒⃒
𝑓(𝑛)− 𝑓(𝑛)

⃒⃒⃒]︁
6 𝜖.

Sketch of the proof. Lemma 8 is proven by backtracking from leaf nodes to the root

node, i.e., consider a node 𝑛 at level 𝜆𝑛, then the proof is done by induction on 𝜆𝑛.

To show that the expected absolute value of the error at node 𝑛 (i.e., 𝑓(𝑛)− 𝑓(𝑛)) is

bounded by 𝜖, we actually show that the expected positive and negative parts of the

error are both bounded by 𝜖/2, which implies our result.

First, we consider the case where 𝑛 is a decision node and we show that there is

no additional error incurred by PBFSA at such node, i.e., if all the offspring of node

𝑛 (in Γ𝑃𝐵𝐹𝑆𝐴
𝑛 and at level 𝜆𝑛 − 1) have the expected positive and negative parts of

their error bounded by 𝜖/2 (the induction hypothesis), then the expected positive and

negative parts of the error at node 𝑛 are also bounded by 𝜖/2.

114

Second, we consider the case where 𝑛 is a chance node, and we show that an

additional error is incurred due to sampling. Using the lemmas proven below, the

positive and negative parts of this additional error are bounded by 𝜖𝑛/2. Since all

the offspring of node 𝑛 (in Ψ𝑃𝐵𝐹𝑆𝐴
𝑛) are decision nodes at level 𝜆𝑛 and PBFSA sets a

target error of (𝜖− 𝜖𝑛)/2 for these nodes, then the first part of the proof shows that

the positive and negative parts of the error of each offspring of node 𝑛 are bounded by

(𝜖− 𝜖𝑛)/2. Combining both observations leads to 𝑛 having the positive and negative

parts of its error bounded by 𝜖/2, which proves the lemma.

4.6.1 Hoeffding’s Inequality Applied to the SCRP

To prove this result, we use Hoeffding’s inequality to compute the number of samples

to ensure probabilistic guarantees. We first state the well-known inequality and a

direct corollary.

Theorem 2 (Hoeffding’s inequality). Let 𝑋 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] be a real-valued bounded

random variable with mean value E [𝑋]. Let 𝑁 ∈ N and (𝑋1, . . . , 𝑋𝑁) be 𝑁 i.i.d.

samples of 𝑋. If 𝑋 =
1

𝑁

𝑁∑︁
𝑖=1

𝑋𝑖, then we have

∀𝛿 > 0 , P
(︀
𝑋 − E [𝑋] > 𝛿

)︀
6 𝑒𝑥𝑝

(︂ −2𝑁𝛿2
(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

2

)︂
, (4.5)

and

∀𝛿 > 0 , P
(︀
𝑋 − E [𝑋] < −𝛿

)︀
6 𝑒𝑥𝑝

(︂ −2𝑁𝛿2
(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

2

)︂
. (4.6)

Corollary 2. Let 𝑋 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] be a real-valued bounded random variable with

mean value E [𝑋]. Let 𝑁 ∈ N and (𝑋1, . . . , 𝑋𝑁) be 𝑁 i.i.d. samples of 𝑋. If

𝑋 =
1

𝑁

𝑁∑︁
𝑖=1

𝑋𝑖, then ∀𝜖 > 0 such that 𝑁 >
𝜋 (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

2

2𝜖2
, we have

E
[︁(︀
𝑋 − E [𝑋]

)︀+]︁
6
𝜖

2
, (4.7)

E
[︁(︀
𝑋 − E [𝑋]

)︀−]︁
6
𝜖

2
, (4.8)

115

where 𝑥+ = max{𝑥, 0} (resp. 𝑥− = −min{𝑥, 0}) is the positive (resp. negative) part

of 𝑥.

To use Hoeffding’s inequality, we need to define lower (𝑓𝑚𝑖𝑛) and upper (𝑓𝑚𝑎𝑥)

bound functions, such that for each chance node 𝑛, 𝑓𝑚𝑖𝑛(𝑛) 6 min
𝑛𝑖∈Ω𝑛

{𝑓(𝑛𝑖)} and

𝑓𝑚𝑎𝑥(𝑛) > max
𝑛𝑖∈Ω𝑛

{𝑓(𝑛𝑖)}.

Lemma 9. Let 𝑛 be a chance node, if

𝑓𝑚𝑖𝑛(𝑛) = min
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)} , (4.9)

and

𝑓𝑚𝑎𝑥(𝑛) = min

{︂
((𝜆𝑛 − 𝑆) (𝑇 − 1))+ + (min {𝑆, 𝜆𝑛} − 1) ,

(︂
2

⌈︂
𝜆𝑛
𝑆

⌉︂
− 1

)︂
max
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)}
}︂
, (4.10)

then

𝑓𝑚𝑖𝑛(𝑛) 6 min
𝑛𝑖∈Ω𝑛

{𝑓(𝑛𝑖)} and 𝑓𝑚𝑎𝑥(𝑛) > max
𝑛𝑖∈Ω𝑛

{𝑓(𝑛𝑖)} .

Notice that the previous lemma involves computing min
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)} and max
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)}.
The following corollary provides an efficient way to compute these values.

Lemma 10. Let 𝑛 be a chance node, and 𝑤𝑚𝑖𝑛 ∈ {1, . . . ,𝑊} be such that 𝜆𝑛 =

𝐶 − 𝐾𝑤𝑚𝑖𝑛
+ 1 (i.e., the minimum batch in 𝑛). For each Stack 𝑠 of 𝑛 with 𝐻𝑠 > 1

containers, let (𝑐𝑠ℎ)ℎ=1,...,𝐻𝑠 be the containers in 𝑠, where 𝑐𝑠1 is the container at the

bottom and 𝑐𝑠𝐻𝑠 at the top (see Figure 4-9, for the case 𝐻 = 𝐻𝑠). Finally, consider

𝐶𝑠
𝑤𝑚𝑖𝑛

= |{𝑐𝑠ℎ = 𝐾𝑤𝑚𝑖𝑛
, ℎ = 1, . . . , 𝐻𝑠}|. Then we have

min
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)} =
∑︁

𝑠=1,...,𝑆
𝐻𝑠>1

⎛⎜⎜⎜⎜⎜⎝𝐻𝑠 − 𝐶𝑠
𝑤𝑚𝑖𝑛
−

∑︁
ℎ=1,...,𝐻𝑠

𝑐𝑠ℎ ̸=𝐾𝑤𝑚𝑖𝑛

1

{︂
𝑐𝑠ℎ = min

𝑖=1,...,ℎ
{𝑐𝑠𝑖}

}︂
ℎ∑︁

𝑖=1

1 {𝑐𝑠ℎ = 𝑐𝑠𝑖}

⎞⎟⎟⎟⎟⎟⎠ , (4.11)

116

and

max
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)} =
∑︁

𝑠=1,...,𝑆
𝐻𝑠>1

⎛⎜⎜⎜⎜⎜⎝𝐻𝑠 −
∑︁

ℎ=1,...,𝐻𝑠

𝑐𝑠ℎ ̸=𝐾𝑤𝑚𝑖𝑛

1

{︂
𝑐𝑠ℎ = min

𝑖=1,...,ℎ
{𝑐𝑠𝑖}

}︂
ℎ∑︁

𝑖=1

1 {𝑐𝑠ℎ = 𝑐𝑠𝑖}

⎞⎟⎟⎟⎟⎟⎠ . (4.12)

Non-uniform case. Similar to the blocking lower bound, we can extend Lemma

10 to the case where probabilities are not uniform across retrieval orders. Recall that

𝑞𝑐𝑠ℎ denotes the probability that 𝑐𝑠ℎ is the first one to be retrieved among the ones

positioned below in its stack and with the same label. Then we have

min
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)} =
∑︁

𝑠=1,...,𝑆
𝐻𝑠>1

⎛⎜⎜⎝𝐻𝑠 − 𝐶𝑠
𝑤𝑚𝑖𝑛
−

∑︁
ℎ=1,...,𝐻𝑠

𝑐𝑠ℎ ̸=𝐾𝑤𝑚𝑖𝑛

𝑞𝑐𝑠ℎ1

{︂
𝑐𝑠ℎ = min

𝑖=1,...,ℎ
{𝑐𝑠𝑖}

}︂⎞⎟⎟⎠ ,

and

max
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)} =
∑︁

𝑠=1,...,𝑆
𝐻𝑠>1

⎛⎜⎜⎝𝐻𝑠 −
∑︁

ℎ=1,...,𝐻𝑠

𝑐𝑠ℎ ̸=𝐾𝑤𝑚𝑖𝑛

𝑞𝑐𝑠ℎ1

{︂
𝑐𝑠ℎ = min

𝑖=1,...,ℎ
{𝑐𝑠𝑖}

}︂⎞⎟⎟⎠ .

4.7 Computational Experiments

Having introduced lower and upper bounds, PBFS, PBFSA, and theoretical guar-

antees in previous sections, we present several experimental results in this section

to understand the effectiveness of our algorithms for the SCRP. For clarity, we re-

fer to the set of instances from [43] as the existing dataset. We present four sets of

experiments:

1. Based on instances from the existing dataset, which have relatively small batches,

we test the PBFS algorithm, as well as the two new heuristics and our lower

bounds.

2. We slightly modify the existing dataset to obtain the modified dataset, to obtain

instances with relatively larger batches. We test the efficiency of PBFSA on this

117

modified dataset.

3. Based on the existing dataset, we show that PBFS improves on the algorithm

proposed in [43] for the online model. Moreover, the two new heuristics (EM

and EG) outperform the ERI algorithm on expectation for the majority of the

instances in the dataset.

4. We change the existing dataset by considering that all containers belong to a

unique batch. We show strong computational evidence to support Conjecture 1,

which states that the leveling policy is optimal for the SCRP under the online

model with a unique batch.

All experiments are performed on a MacBook Pro with 2.2 GHz Intel Core i7 processor

and 8.00 GB of RAM, and the programming language is MATLAB 2016a. Finally, all

results and instances used in this section are available at https://github.com/vgalle/

StochasticCRP.

Implementation of heuristics.

1. Computing the number of relocations using 𝑏 when 𝑆 or fewer containers remain:

In the retrieval process, when there are 𝑆 containers or fewer remaining

in the configuration, the expected number of relocations performed

by ERI, EM,EG, and L is computed using 𝑏. This is motivated by the fol-

lowing observation: ERI, EM, EG, and L are optimal when 𝑆 or fewer contain-

ers remain in the configuration, and Lemma 6 shows that the optimal expected

number of relocations in this case is equal to 𝑏. Therefore, for all heuristics

(except Random), instead of running simulations until there are no containers

left, we stop when there are 𝑆 containers left and compute the expected number

of relocations using 𝑏 instead.

2. Estimating the expected number of relocations using sampling: To estimate the

exact objective value for a given heuristic, one would have to consider all possible

retrieval scenarios. Instead, for each heuristic unless specified otherwise,

118

https://github.com/vgalle/StochasticCRP
https://github.com/vgalle/StochasticCRP

we report the average over 5000 samples (of retrieval orders) for each

instance, where samples are uniformly drawn at random.

Existing dataset description. The full description of the dataset can be found

in [43] and the original dataset is available at http://crp-timewindow.blogspot.com.

Note that:

∙ Configuration sizes vary from T = 3, . . . ,6 tiers, and S = 5, . . . ,10 stacks.

∙ Two occupancy rates are considered, 50 and 67 percent. The occupancy

rate (𝜇 ∈ [0, 1]) is defined such that the initial number of containers is 𝐶 =

𝑟𝑜𝑢𝑛𝑑 (𝜇× 𝑆 × 𝑇), where 𝑟𝑜𝑢𝑛𝑑(𝑥) rounds 𝑥 to the closest integer. Therefore,

a given triplet (𝑇, 𝑆, 𝜇) is equivalent to a given triplet (𝑇, 𝑆, 𝐶), and note that

if 𝐶 = 𝑟𝑜𝑢𝑛𝑑 (0.67× 𝑆 × 𝑇), the condition 0 6 𝐶 6 𝑆𝑇 − (𝑇 − 1) is satisfied.

∙ Given a configuration size (𝑇 and 𝑆) and an occupancy rate (𝜇) resulting in a

given initial number of containers (𝐶), the dataset includes 30 different initial

configurations.

∙ For all 1,440 instances, the ratio between the number of batches and 𝐶 is taken

to be around half, i.e., there are on average two containers per batch, which is

the smallest size for a batch.

In all our experiments, the time limit is set to an hour, and the first

look-ahead lower bound 𝑏1 is used as input for both PBFS and PBFSA.

All instances are solved by heuristics and lower bounds within seconds or fewer.

4.7.1 Experiment 1: Batch Model with Small Batches

Table 4.1 gives a summary of the results as follows: "indicates that all 30 instances

are solved optimally by PBFS. In this case, the average solution time to solve these

instances is given in seconds. Otherwise, the number of instances solved optimally is

provided in red and in the form x/30. This table shows the efficiency of PBFS as it

can solve all instances except two, for 𝑇 = 3 and 𝑇 = 4. Most important, the average

119

http://crp-timewindow.blogspot.com

𝑇 3 4 5 6
𝑆 Fill rate 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent
5 𝐶 8 10 10 13 13 17 15 20

Solved " " " " " 28/30 " 15/30
Time (s) 0.01 0.02 0.03 0.12 0.17 5.17

6 𝐶 9 12 12 16 15 20 18 24
Solved " " " " " 25/30 " 14/30
Time (s) 0.01 0.03 0.04 0.86 2.90 15.94

7 𝐶 11 14 14 19 18 23 21 28
Solved " " " " " 24/30 23/30 5/30
Time (s) 0.02 0.04 0.04 0.83 1.37

8 𝐶 12 16 16 21 20 27 24 32
Solved " " " " " 20/30 22/30 5/30
Time (s) 0.01 0.06 0.16 10.04 6.84

9 𝐶 14 18 18 24 23 30 27 36
Solved " " " " 29/30 10/30 19/30 2/30
Time (s) 0.03 0.10 0.37 8.84

10 𝐶 15 20 20 27 25 34 30 40
Solved " " " 28/30 29/30 12/30 22/30 2/30
Time (s) 0.03 0.10 0.54

Table 4.1: Instances solved by PBFS in the batch model with small batches.

time to solve these instances is under 10 seconds for these problem sizes. Since many

ports today have a maximum tier requirement of 4 and need fast solutions, PBFS

could be used in practice in the case of small batches. However, for 𝑇 = 5 and 𝑇 = 6,

PBFS cannot solve all instances optimally in a timely manner. This suggests that, as

the problem grows slightly, some instances become very hard to solve, which should

not be a surprise, given the 𝒩𝒫-hardness of the problem. To avoid such situations in

real operations, heuristics can be used to provide a “good” sub-optimal solution (good

in the sense of being not too far from optimality). Therefore, we want to evaluate the

performance of these heuristics to know which one should be used in real operations.

We measure the performance of heuristics and the tightness of lower bounds in

Tables B.1 and B.2. Concerning lower bounds, 𝑏 encompasses a significant number

of relocations. Adding unavoidable “bad” relocations in 𝑏1 and 𝑏2 improves the lower

bound slightly. But experiments seem to confirm that 𝑏2(𝑛) − 𝑏1(𝑛) 6 𝑏1(𝑛) − 𝑏(𝑛)
holds, supporting our intuition that the relative increase of lower bounds 𝑏𝑘(𝑛) −
𝑏𝑘−1(𝑛) decreases with 𝑘.

Concerning heuristics, EG and EM clearly outperform ERI as they result in lower

expected numbers of relocations. When we have access to the optimal solutions,

both heuristics are on average at most 2% more than the optimal solution. We

120

expect this behavior to be similar for larger instances, however we only have access to

lower bounds to evaluate their performances. In this case, heuristics are on average

at most 11% more than 𝑏2, hence at most 11% from the optimal solution (even

though we believe that this number is very conservative, as our lower bounds are

not “tight”). Therefore, both EG and EM appear to be good solutions for the SCRP

under the batch model with small batches. In this case, we recommend using EM for

its simplicity of implementation and its understandability.

4.7.2 Experiment 2: Batch Model with Larger Batches

Modifying existing instances

For the sake of reproducibility, we use the existing set of instances, but slightly modify

it to consider larger batches. To create these instances, for each original instance 𝑛,

consider 𝑛′ with the same containers in the same configuration. But, if 𝑤 is the batch

of a container 𝑐 in 𝑛, then we take the batch of 𝑐 in 𝑛′ to be 𝑤′ =
⌈︁
𝑤
𝛾

⌉︁
, where 𝛾 > 1,

i.e., we merge 𝛾 batches together. In these experiments, we take 𝛾 = 2, which implies

that batches have an average size of four.

𝑇 3 4 5 6
𝑆 Fill rate 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent
5 𝐶 8 10 10 13 13 17 15 20

Solved " " " " " 21/30 " 3/30
Time (s) 0.08 0.29 0.14 4.55 3.20 72.70

6 𝐶 9 12 12 16 15 20 18 24
Solved " " " " " 18/30 27/30 1/30
Time (s) 0.08 0.47 0.25 126.37 14.74

7 𝐶 11 14 14 19 18 23 21 28
Solved " " " 29/30 " 9/30 14/30 0/30
Time (s) 0.13 0.71 0.58 17.74

8 𝐶 12 16 16 21 20 27 24 32
Solved " " " 28/30 29/30 6/30 17/30 1/30
Time (s) 0.08 1.67 1.26

9 𝐶 14 18 18 24 23 30 27 36
Solved " " " 26/30 25/30 5/30 15/30 0/30
Time (s) 0.13 1.49 1.47

10 𝐶 15 20 20 27 25 34 30 40
Solved " " " 22/30 29/30 7/30 14/30 0/30
Time (s) 0.17 0.79 3.10

Table 4.2: Instances solved by PBFSA in the batch model with larger batches.

121

Target error 𝜖

To set our target error, we consider the following. Let 𝑛0 be a given instance, and

set 𝜖 = 𝑏(𝑛0)
2

. In this case, we know that 𝜖 6 𝑓(𝑛0)
2

, which implies that we are making

an error of at most 50%. Note that this error is very conservative due to two major

things: first, 𝑏(𝑛0) is not necessarily representative of 𝑓(𝑛0), specially if 𝑛0 has many

containers. Second, the number of samples given by Hoeffding’s inequality is also

very conservative, probably making our approximation substantially more accurate

than what we can theoretically prove.

Results

Results are summarized in Table 4.2. Similarly to Table 4.1, "indicates that all 30

instances are solved approximately by PBFSA within the given expected error. In this

case, the average solution time to solve these instances is given in seconds. Otherwise,

the number of instances solved is provided in red and in the form x/30. This table

shows that PBFSA presents several advantages. First, it solves most of instances

with 𝑇 = 4 and 𝑆 6 9 approximately within two minutes, while we note that PBFS

was not able to solve most of these. Moreover, as can be seen in Tables B.3 and

B.4, PBFSA still outperforms the best heuristics despite the fact that we only set the

theoretical guarantee to 50% of optimality. Together, these two advantages show the

practicality of PBFSA for problem sizes typically encountered in real ports. Moreover,

we note that increasing the batch size appears to make the problem significantly more

complicated to solve as we can solve optimally larger instances in Experiment 1 (see

Table 4.1). Finally, we remark that similar conclusions of Experiment 1 can be drawn

for lower and upper bounds (see Tables B.3 and B.4).

4.7.3 Experiment 3: Online Model and Comparison with Ku

and Arthanari [43]

Table 4.3 gives a summary similar to the two previous experiments. In addition, we

report the results of [43] who set a time limit of eight hours for each instance. In

122

this table, X(X) indicates that all 30 instances are solved optimally by both PBFS

and Ku and Arthanari [43]. In this case, the average solution time in seconds to

solve these instances is given for PBFS and for Ku and Arthanari [43] in parentheses.

"indicates that all 30 instances are solved optimally only by PBFS but not in [43].

In this case, only the average solution time to solve these instances with PBFS is

given in seconds. Otherwise, the number of instances solved by PBFS is provided in

red and in the form x/30.

𝑇 3 4 5 6
𝑆 Fill rate 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent
5 𝐶 8 10 10 13 13 17 15 20

Solved X(X) " X(X) " X(X) 28/30 " 18/30
Time (s) 0.01 (0.02) 0.02 0.01 (2.51) 0.09 0.16 (2483.30) 3.74

6 𝐶 9 12 12 16 15 20 18 24
Solved X(X) " X(X) " " 25/30 " 15/30
Time 0.01 (0.01) 0.04 0.06 (139.08) 0.81 1.85 14.92

7 𝐶 11 14 14 19 18 23 21 28
Solved X(X) " X(X) " " 24/30 23/30 5/30
Time (s) 0.02 (0.33) 0.04 0.04 (207.62) 0.67 1.38

8 𝐶 12 16 16 21 20 27 24 32
Solved X(X) " " " " 20/30 22/30 5/30
Time (s) 0.01 (0.33) 0.05 0.10 8.29 5.85

9 𝐶 14 18 18 24 23 30 27 36
Solved X(X) " " " 29/30 10/30 19/30 2/30
Time (s) 0.02 (32.24) 0.09 0.38 7.26

10 𝐶 15 20 20 27 25 34 30 40
Solved X(X) " " 28/30 29/30 12/30 16/30 2/30
Time (s) 0.03 (58.85) 0.08 0.52

Table 4.3: Instances solved by PBFS and Ku and Arthanari [43] in the online model
with small batch.

Results show strong evidence that our solution significantly improves the best

existing results for the SCRP under the online model, given that we solve many larger

instances optimally. Furthermore, it also outperforms the most recent algorithm in

solution time for the problem sizes it can solve. It appears that, for problems for

which we can solve all (or almost all) instances, most instances are “easy” to solve

as the algorithm finds a solution within seconds. However, as in the batch model,

there exist some instances for which the optimal solution still requires an exponential

number of nodes, which makes our algorithm not tractable.

In Tables B.5 and B.6, we also report in parentheses the averages for ERI and

Random found in [43]. The results for Random are consistent. However, we find

123

significantly better results for our implementation of ERI. This is unexpected since

the only difference between the two implementations is the use of lower bound 𝑏, when

the configuration has fewer than 𝑆 containers remaining. Nevertheless, ERI should

also be optimal in this case, as it reduces to heuristic L. So this should not affect

the expected number of relocations, and we cannot explain this difference. Finally,

we point out that the results are quite similar to those in Experiment 1. Indeed,

the existing dataset has relatively small batches (on average 2 containers), which

inherently makes the two models, batch and online, very close to each other.

4.7.4 Experiment 4: Online Model with a Unique Batch

𝑇 3 4 5 6
𝑆 Fill rate 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent 50 percent 67 percent
5 𝐶 8 10 10 13 13 17 15 20

PBFS 2.08 3.33 3.54 6.53 6.56 12.05 9.13 17.28
𝐿. 2.08 3.33 3.54 6.52 6.57 12.06 9.14 17.29

6 𝐶 9 12 12 16 15 20 18 24
PBFS 2.10 4.04 4.23 8.02 7.01 13.48 10.73 20.13
𝐿. 2.10 4.04 4.23 8.02 7.01 13.48 10.73 20.13

7 𝐶 11 14 14 19 18 23 21 28
PBFS 2.69 4.60 4.82 9.55 8.58 14.75 12.22 23.14
𝐿. 2.69 4.61 4.82 9.55 8.58 14.74 12.22 23.14

8 𝐶 12 16 16 21 20 27 24 32
PBFS 2.61 5.19 5.51 9.96 9.12 17.75 13.83 -
𝐿. 2.62 5.19 5.51 9.95 9.12 17.75 13.83 26.04

9 𝐶 14 18 18 24 23 30 27 36
PBFS 3.31 5.72 6.10 11.58 10.89 19.15 - -
𝐿. 3.31 5.72 6.10 11.58 10.89 19.14 15.40 28.84

10 𝐶 15 20 20 27 25 34 30 40
PBFS 3.36 6.38 6.68 12.98 11.13 22.07 - -
𝐿. 3.36 6.38 6.67 12.99 11.13 22.06 16.87 31.77

Table 4.4: Instances solved with PBFS and heuristic L in the online model with a
unique batch.

In this experiment, we consider the existing dataset, but assign all containers

into a unique batch (𝑊 = 1). We consider the SCRP under the online model, where

containers are revealed one at a time. Note that, in this case, each container is equally

likely to be retrieved, and it is equivalent to know no-information about containers

relative retrieval order. For each instance, we solve it twice: first using PBFS, and

then using heuristic L, for which we sample 10,000 scenarios (this is different from

the 5000 samples considered in previous experiments). We report the results in Table

124

4.4. In this table, for each problem size, we report the expected optimal number of

relocations averaged over 30 instances. The notation “-” means that all 30 instances

could not be solved optimally with PBFS within the given time limit of an hour. Note

that the expected number of relocations using heuristic L reported in this experiment

might be less than the one of PBFS ; this is only due to the fact that we are sampling.

Intuitively, L should be the optimal solution in this setting, and this experiment shows

strong evidence that the next conjecture holds.

Conjecture 1. Consider a configuration 𝑛 with a unique batch. Let 𝑓 𝑜(𝑛) be the

minimum expected number of relocations to empty 𝑛 under the online model, and let

𝑓 𝑜,𝐿(𝑛) be the expected number of relocations performed by the leveling heuristic under

the online model, then

𝑓 𝑜(𝑛) = 𝑓 𝑜,𝐿(𝑛). (4.13)

This conjecture could also be made in the dynamic case, when containers arrive

to be stacked. These results would have important ramifications for port operations,

namely: the optimal policy to minimize relocations, when no information is given in

advance, is leveling configurations.

125

126

Chapter 5

The Yard Crane Scheduling Problem

with relocations

5.1 Contributions

Based on the literature review in Chapter 2, most studies can be partitioned into

two distinct groups: the first focuses on dynamic crane scheduling for storage and

retrieval requests without relocations (YCSP literature) while the second one only

deals with relocations but disregards major practicalities introduced in the YCSP

and the following section (for example, the third dimension of the block, the crane

travel time features, the order flexibility and the dynamic nature of information).

Recently some works have started to integrates these two groups and study the

storage/retrieval schedule together with relocations and storage location assignments,

leading to more efficient solutions. We cited among these works [17, 80] for single

crane scheduling or [57] in the case of two cranes. However, both Dell et al. [17] and

Park et al. [57] consider rule-based heuristic solutions with some strong dependence

on parameters that are hard to set in real operations. If Yuan et al. [80] are the first

to provide an exact solution, their approach only considers a greedy optimization

of crane travel time. Moreover, it appears to only apply to the special problem of

steel plants which consider low stacks, hence few relocations per request. Our work

contributes to the existing literature and to practice as follows:

127

1. We propose a model which considers together storage, retrieval and enforced

relocation requests. To the best of our knowledge, this is the first work giving

an exact solution for the YCS problem with relocations in the case of a single

crane under realistic assumptions.

2. We introduce an objective function that jointly optimizes the current crane

travel time and the expected number of future relocations.

3. We develop a model and solutions that are general and applicable to other

AS/RSs where stacking occurs (such as steel plants). This model can apply to

all I/O point configurations described below and potentially more; it does not

assume any crane constraints and uses a detailed model for crane travel times.

4. We present more general scheduling constraints relaxing previous assumptions

that all request orders were feasible. As we mention below, this is not practical in

many applications where external customers are concerned as fairness becomes

an issue. The flexibility model proposed in this chapter is widely applicable and

could be worth studying in other settings.

5. In the setting introduced in this chapter, a solution method needs to answer

two questions simultaneously: i) crane movements; and ii) storage and reloca-

tion locations assignment. To solve the YCS problem under this more realistic

setting in a reasonable amount of time (e.g., a few minutes), we propose one

exact algorithm and one efficient heuristic integrating both decisions.

a. We formulate an intuitive binary IP based on crane cycles. By studying the

structure of the proposed formulation, we confirm previous results which

state that the complexity of the problem lies not only in the number of

orders but also in the number of starting points for each request.

b. We propose a heuristic taking advantage of theoretical properties of the

previous binary IP. This solution performs a search on the feasible space

of request orders and computes lower and upper bounds for each visited

order. In this chapter, we use a standard local search but future work

128

could be done to use meta-heuristics such as simulated annealing, tabu

search or genetic algorithms.

6. The last contribution of this chapter is the testing of the two solution methods

both on randomly generated data and real data from a port terminal.

5.2 Problem Description

This section describes the problem of interest in this chapter. Appendix C.1 summa-

rizes all notations defined in this section.

5.2.1 Problem Geometry

We consider the following situation. A block consists of 𝑋 stacks, 𝑌 rows and 𝑍 tiers

(see Figure 1-7) and we assume that this block is served by a single yard crane (YC),

as shown in Figure 1-7. Each slot of the block can store a unique type of container

(for example, twenty-foot or forty-foot equivalent units). Note that 𝑋 is limited by

the width of the crane while 𝑍 is limited by the height of the crane. 𝑍 corresponds

to the maximum number of containers that can be stacked on the top of each other.

Typically, these values range from 6 to 13 for 𝑋, 10 to 40 for 𝑌 and 3 to 6 for 𝑍. Note

that the tiers are counted from bottom to top. In this block, a stack 𝑠 is uniquely

characterized by a two-dimensional vector denoted by (𝑠𝑥, 𝑠𝑦) corresponding to its

position in the 𝑥-𝑦 dimensions. We denote by 𝒮𝐵 the set of stacks in the block and

note that |𝒮𝐵| = 𝑋 × 𝑌 .

We assume that there are 𝑀 input/output (I/O) points around the block that

we consider, denoted by 𝐼/𝑂𝑚 for 𝑚 ∈ {1, . . . ,𝑀}. These I/O points correspond

to locations where vehicles, with storage or retrieval requests park. I/O points are

“artificial” stacks where no container can be stored except when retrieving a container.

We denote by 𝒮𝐼 the set of artificial stacks corresponding to I/O points. For the sake

of clarity, we denote 𝒮 = 𝒮𝐵 ∪ 𝒮𝐼 the set of all stacks.

General Automated Storage/Retrieval Systems (AS/RSs) can present many con-

129

X

Y Z

I/O points

I/O6

I/O7

I/O8

I/O5

I/O1

I/O2

I/O3

I/O4

I/O9

I/O10

(a) Asian config.

I/O1 I/O2 I/O3

I/O4 I/O5 I/O6

Seaside

Landside

(b) European con-
fig.

I/O3

I/O6

I/O7

I/O8

I/O5

I/O1

I/O2

I/O4 I/O9

I/O10
In

tern
al

Y
ard

E
xt

er
n
a
l
Y
a
rd

(c) Double-sided
config.

Figure 5-1: A top view of a block with three different I/O points configurations.

figurations of I/O points. In the case of port yards, Wiese et al. [75] and Carlo

et al. [7] discuss the two most frequent configurations (see Figures 5-1a and 5-1b),

which are commonly referred to as Asian and European style configurations. The

"double-sided" configuration is another configuration of interest (see Figure 5-1c) but

it has been less studied in related work. This latter configuration is mostly used

in ports where internal and external yards are completely separated (for instance

when the internal yard is automated or the external yard works on trains). The I/O

points configuration is given as an input to the problem. In European and double-

sided configurations, we denote by 𝑀1 the number of I/O points on the seaside or

internal yard side and 𝑀2 the number of I/O points on the opposite side, such that

𝑀 =𝑀1 +𝑀2. We mention that our solution methods are general and independent

from this configuration, thus could be generally applied to other configurations.

Initially, a stack 𝑠 ∈ 𝒮𝐵 stores a certain number of containers which we denote

by 𝑧𝑖𝑠 ∈ {0, . . . , 𝑍}. Figure 5-3 shows these numbers in an example with Asian

configuration. Note that these numbers are not given in Figure 5-1 just for the sake

of clarity.

130

The most frequently used handling equipment in port storage yards are either

rubber-tired gantry cranes (RTGs) or rail-mounted gantry cranes (RMGs). RMGs are

typically automated, hence also called automated stacking cranes (ASCs). However,

RTGs are more flexible as they can rotate and change blocks within the port yard

(see [7] for more details on handling equipment). In this chapter, we assume that a

unique YC (RTG or RMG) is allocated to the block of interest and serves requests at

this block. Its initial position in the block is denoted by 𝑠𝑖 (∈ 𝒮) and corresponds to

the stack or the I/O point above which the crane’s spreader lies (see [28, 80]). The

travel time of a YC is thoroughly studied in [63] which shows that, in the case where

there is no crane interference, assuming constant speed in all dimensions is capturing

well the actual travel times in real operations. Figure 5-2 shows the typical movement

pattern of a RMG when performing a storage or retrieval request. Each request has

four phases. First, there is an empty drive from the position where the crane ended

the previous request to the starting stack of the new request. According to Speer

and Fischer [63], it is important to consider the time to size the spreader during

empty drives. However, we disregard this time because it is required only if there are

different types of containers in the block, which is not the case in this chapter. Then,

the crane picks up the container with its spreader, is driven loaded to the destination

stack and sets the container down. Based on this pattern, we introduce the following

notations. Let
(︀
𝑣𝑥,𝐸, 𝑣𝑥,𝐿

)︀
be the YC trolley speed with and without load,

(︀
𝑣𝑦,𝐸, 𝑣𝑦,𝐿

)︀
the YC gantry speed and

(︀
𝑣𝑧,𝐸, 𝑣𝑧,𝐿

)︀
the YC speed to lower and hoist the spreader.

We assume that all speeds are given in containers/s, i.e., how many containers can

the crane pass over per second in each dimension. In addition, 𝑡ℎ the handling time to

pick up or set down a container, which is mainly stabilization and changing direction.

Empty	drive

Move	trolley	(x)

Move	gantry	(y)
Hoist	

spreader
Pick	up
container

Lower	
spreader

Loaded	drive

Hoist	
spreader

Set	down
container

Lower	
spreader

t

Pick	up Set	down

Move	trolley	(x)

Move	gantry	(y)

Figure 5-2: Pattern of typical YC movements for a given cycle. Striped blue indicates
empty movements, solid red loaded movements and dotted green handling movements.

131

Using these notations, consider two stacks 𝑠, 𝑟 ∈ 𝒮, then the time of an empty

(respectively loaded) drive of the crane from stack 𝑠 to stack 𝑟 can be computed as

𝑡(𝐸)
𝑠𝑟 = max

{︂ |𝑠𝑥 − 𝑟𝑥|
𝑣𝑥,𝐸

,
|𝑠𝑦 − 𝑟𝑦|
𝑣𝑦,𝐸

}︂
and 𝑡(𝐿)𝑠𝑟 = max

{︂ |𝑠𝑥 − 𝑟𝑥|
𝑣𝑥,𝐿

,
|𝑠𝑦 − 𝑟𝑦|
𝑣𝑦,𝐿

}︂
.

The times to pick up/set down a container at tier 𝑧 ∈ {1, . . . , 𝑍} (which means that

the stack has 𝑧 − 1 containers) are equal and given by

𝑡(𝐻) (𝑧) =
𝑍 + 1− 𝑧
𝑣𝑧,𝐸

+
𝑍 + 1− 𝑧

𝑣𝑧,𝐿
+ 𝑡ℎ =

2 (𝑍 + 1− 𝑧)
𝑣𝑧

+ 𝑡ℎ,

where 𝑣𝑧 =
2

1
𝑣𝑧,𝐸

+ 1
𝑣𝑧,𝐿

is the harmonic mean of 𝑣𝑧,𝐸 and 𝑣𝑧,𝐿.Recall that tiers are

counted from bottom to top. We assume that I/O points are equivalent to a stack

with 0 containers, hence pick up/set down the container on tier 1, thus the cost

of 𝑡(𝐻) (1) =
2𝑍

𝑣𝑧
+ 𝑡ℎ. This model is more general than the one presented in [28].

Finally, we mention that the described pattern is similar for RMGs and RTGs. The

main difference between both would be the values of the parameters.

5.2.2 Requests

Given the problem geometry, the goal is to schedule storage and retrieval requests

(also called productive moves) by operating the YC in a minimum amount of time.

As this process is dynamic, the block sequencing approach is typically adopted to

consider a more static process (see [17, 73, 28, 63, 80]). In this approach, a set

of urgent requests is selected among the available ones. The selected requests are

sequenced and executed by the YC. Once these are done, a new set is selected and

performed. In this setting, a suitable solution should only require a few minutes to

solve as the problem has to be solved repeatedly and the information about requests

is not available much before it needs to be performed.

Generally, we consider a sequence of 𝑁 storage and retrieval requests to perform.

As accurate information is not known much in advance, 𝑁 is typically small compared

to |𝒮𝐵| and usually ranges from 1 to 20. Requests are indexed based on their arrival

132

order. Container 𝑛 and vehicle 𝑛 are used to refer to the container and vehicle

associated with request 𝑛 ∈ {1, . . . , 𝑁}. We denote by 𝒩𝑠 (respectively 𝒩𝑟) the

indices of requests corresponding to storage requests (respectively retrieval requests)

such that

{1, . . . , 𝑁} = 𝒩𝑠 ∪𝒩𝑟.

In today’s operations, requests are fulfilled solely on a first-come first-served

(FCFS) basis (see [73]). On one hand, previous studies of different AS/RSs have

shown that relaxing the FCFS constraint can significantly improve the overall ser-

vice time. On the other hand, relaxing the FCFS policy is only possible to a certain

extent to avoid issues with truck unions and maintain fairness among drivers. Conse-

quently, we model the flexibility of the 𝑛𝑡ℎ request (𝑛 ∈ {1, . . . , 𝑁}) by two parameters

(𝛿−𝑛 , 𝛿
+
𝑛) ∈ N2, such that the 𝑛𝑡ℎ request can be served between the 𝑛 − 𝛿−𝑛 -th request

and the 𝑛 + 𝛿+𝑛 -th request. Note that ∀𝑛 ∈ {1, . . . , 𝑁}, (𝛿−𝑛 , 𝛿
+
𝑛) = (0, 0) means that

the crane can only serve requests on a FCFS basis while ∀𝑛 ∈ {1, . . . , 𝑁}, (𝛿−𝑛 , 𝛿+𝑛) =
(𝑛−1, 𝑁−𝑛) means that all orders are feasible. This modeling assumption is further

motivated by the fact that a request can either be associated with an external or

internal vehicle; the latter type being owned by the port operator. Therefore, while

not much flexibility can be assumed for external vehicles, the operator has full control

on the flexibility of its own vehicles.

For each request 𝑛 ∈ {1, . . . , 𝑁}, we denote by 𝐿𝑛 the set of stacks in which the

container 𝑛 can be picked up by the crane. If 𝑛 ∈ 𝒩𝑠, then 𝐿𝑛 is the set of I/O points

in which the vehicle 𝑛 can park with container 𝑛. If 𝑛 ∈ 𝒩𝑟, then 𝐿𝑛 is the stack in

the block in which container 𝑛 is stored. We denote 𝐸𝑛 to be the set of stacks onto

which container 𝑛 can be put down. Typically, to have as much flexibility as possible,

we will consider 𝐸𝑛 = 𝒮𝐵 for 𝑛 ∈ 𝒩𝑠 and 𝐸𝑛 = 𝒮𝐼 for 𝑛 ∈ 𝒩𝑟, thus generalizing

settings in [73, 28].

As we mentioned, for each retrieval request 𝑛 ∈ 𝒩𝑟, 𝐿𝑛 = {𝑠𝑛} corresponds to

the stack in the block in which container 𝑛 is stored. In addition, we must be given

the exact tier of stack 𝑠𝑛 in which container 𝑛 is stored. We denote this tier by

133

𝑧𝑛 ∈ {1, . . . , 𝑧𝑖𝑠𝑛}. If container 𝑛 is on the top of its stack, i.e., 𝑧𝑛 = 𝑧𝑖𝑠𝑛 , then it can

be retrieved directly. However, for a significant number of requests, container 𝑛 is

blocked by other containers, i.e., 𝑧𝑛 < 𝑧𝑖𝑠𝑛 , then the YC has to relocate containers

blocking containers 𝑛 from stack 𝑠𝑛 to another stack of the block. These container

moves are called unproductive requests (also called relocations or reshuffles). They

result both from a lack of information for future requests and inefficient decisions

in past operations of the YC. Minimizing these unproductive requests has been an

important metric for port operators (see [27]).

We denote by 𝒩𝑢 the set of unproductive requests needed to perform all retrieval

requests in 𝒩𝑟. Therefore, the YC effectively has 𝑁 > 𝑁 requests to perform where

{1, . . . , 𝑁} = 𝒩𝑠 ∪𝒩𝑟 ∪𝒩𝑢.

Naturally, we can extend the notations 𝐿𝑛, 𝐸𝑛, 𝑠𝑛 and 𝑧𝑛 to each relocation request

𝑛 ∈ 𝒩𝑢. If 𝐿𝑛 = {𝑠𝑛}, then 𝑠𝑛 is the stack where the blocking container 𝑛 is stored

and 𝑧𝑛 is the tier of container 𝑛. Typically, we will consider 𝐸𝑛 = 𝒮𝐵 ∖ 𝐿𝑛, which

means that container 𝑛 could be relocated anywhere except where it is already. Given

these 𝑁 requests, we define

𝒮(𝐿) =
⋃︁

𝑛∈{1,...,𝑁}

𝐿𝑛 , 𝒮(𝐸) =
⋃︁

𝑛∈{1,...,𝑁}

𝐸𝑛,

such that 𝒮(𝐿) is the set of starting stacks for loaded drives of the YC, while 𝒮(𝐸) is

the set of starting stacks for empty drives of the YC. Finally, we define 𝒮𝑅 = 𝒮𝐵∩𝒮(𝐿)

as the set of stacks of the block where there is at least one container that needs to be

retrieved.

For each request 𝑛 ∈ 𝒩𝑟 ∪ 𝒩𝑢, 𝑏𝑛 denotes the index of the container directly

blocking container 𝑛 (where 𝑏𝑛 = 0 means that container 𝑛 is on the top of its stack).

Finally, consider a stack 𝑠 ∈ 𝒮𝐵, we let 𝑚𝑠 denote the lowest container to be

134

retrieved in 𝑠. Using this notation, we define ∼
𝑧𝑠 such that

∼
𝑧𝑠 =

⎧⎨⎩ 𝑧𝑚𝑠 − 1, if 𝑠 ∈ 𝒮𝑅,
𝑧𝑖𝑠, otherwise.

.

Here, ∼
𝑧𝑠 represents the number of containers in 𝑠 after all containers have been re-

trieved and none has been stored or relocated. Note that it is also the minimum

number of containers stack 𝑠 can have after performing all 𝑁 requests.

As in [80], we assume that the number of cycles (empty/loaded drives) done by

the YC to perform all 𝑁 requests is exactly 𝑁 . Consider a stack 𝑠 ∈ 𝒮𝑅 where

there is at least one container that needs to be retrieved. This assumption prevents

any containers to be relocated or stored on stack 𝑠 before 𝑚𝑠 (the lowest container

to be retrieved in 𝑠) has been retrieved. Even though this assumption seems to be

restrictive, each cycle of the crane takes a significant amount of time. So, relocating a

container twice for the same set of requests is inefficient. Moreover, we note that this

assumption is realistic due to the fact that 𝑁 , hence 𝑁 are small compared to |𝒮𝐵|,
i.e., there always exists stacks /∈ 𝒮𝑅 where stacking and relocation requests can be

done. However, this also prevents a container to be moved twice before it is retrieved

and potentially makes the problem infeasible. To insure that the FCFS policy is

always feasible under this assumption and regardless of the level of flexibility of both

requests, we assume the following: consider the case where two retrieval requests

𝑛, 𝑛′ ∈ 𝒩𝑟 are such that containers 𝑛 and 𝑛′ are stored in the same stack (i.e.,

𝐿𝑛 = 𝐿𝑛′) and no containers in between needs to be retrieved. If container 𝑛 lies

above container 𝑛′, i.e., 𝑧𝑛 > 𝑧𝑛′ , then we assume that 𝑛 < 𝑛′. Indeed, it is common

practice for two trucks requesting containers in the same stack to change their orders:

if the truck waiting for the upper container arrived after the truck waiting for the

lower container, then the truck waiting for the upper container “skips” the line and

gets served just before the truck waiting for the lower container.

Example. Figure 5-3 shows a top view of a small block with Asian configuration

(𝑋 = 5, 𝑌 = 10, 𝑍 = 4 and 𝑀 = 10) and each stack shows the initial number of con-

135

I/O6

I/O7

I/O8

I/O5

4 2 4 3 3

2 4 3 0 3

4 4 4 1 4

2 3 2 3 2

4 3 4 4 4

3 4 2 3 3

3 3 4 4 2

3 3 4 4 4

4 3 2 2 2

2 4 4 2 2 I/O1

I/O2

I/O3

I/O4

I/O9

I/O10

8

7

4

2

6

1

9

5

Nr

Nu

Figure 5-3: A top view of a block with Asian configuration. The integer in each stack
of the block corresponds to the number of containers currently stored in the stack.
For stacks in 𝒮𝑅, we highlight containers to be retrieved (𝒩𝑟) and relocated (𝒩𝑢).

tainers (𝑧𝑠𝑖)𝑠∈𝒮𝐵
. The crane starts above stack 𝑠𝑖 = (3, 5). There are 𝑁 = 5 productive

requests, a single storage and four retrievals. We consider that only FCFS is possible,

i.e., (𝛿−𝑛 , 𝛿+𝑛) = (0, 0). We have 𝒩𝑠 = {3} and the storage request can be done from

any I/O point, i.e., 𝐿3 = 𝒮𝐼 and 𝐸3 = 𝒮𝐵. The retrieval requests (𝒩𝑟 = {1, 2, 4, 5})
are associated with containers shown in solid green in Figure 5-3. Containers to be

retrieved are located in stacks (𝐿1, 𝐿2, 𝐿4, 𝐿5) = ({(3, 8)}, {(5, 2)}, {(4, 5)}, {(3, 8)})
and tiers (𝑧1, 𝑧2, 𝑧4, 𝑧5) = (3, 3, 2, 1). These requests require 4 relocations (shown

with red stripped containers) such that 𝒩𝑢 = {6, 7, 8, 9} and 𝑁 = 9. In this ex-

ample, we have 𝒮𝑅 = {(5, 2), (4, 5), (3, 8)},
(︀
min(5,2),min(4,5),min(3,8)

)︀
= (2, 4, 5) and

(𝑏1, 𝑏2, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8, 𝑏9) = (6, 0, 7, 9, 0, 8, 0, 1). The goal is to provide the route of

the YC to perform all these requests and assign new stacks to stored and relocated

containers.

5.2.3 Objective Function

When scheduling all 𝑁 requests, the main goal is typically to minimize the crane

travel time and make decisions about storage and relocation locations accordingly.

However, as we previously mentioned, the number of relocations for future requests,

hence the crane travel time for future requests is directly impacted by current storage

136

and relocation decisions. Because our problem is dynamic, we want to optimize both

our current and future crane travel times. However, these are naturally conflicting

objectives. We explain and formalize this trade-off in the following objective function.

On one hand, the immediate objective refers to the crane travel time to perform

the 𝑁 requests. Minimizing the immediate objective means that containers involved

in stacking and relocation requests should be stored in the closest stacks to the crane

where a slot is available, potentially creating higher stacks.

On the other hand, the cost-to-go relates to the future crane travel time. Since

we do not assume any information about future requests, the variability in expected

crane travel time is mostly correlated with the number of future relocations. It has

been shown when only considering retrievals that the expected number of blocking

containers is a good proxy for the number of relocations when the number of stacks

is large (see [25]). Moreover, this metric also makes sense from a practical point of

view. The widely used leveling heuristic minimizes the number of blocking containers

and appears to be optimal experimentally with respect to the expected number of

relocations when requests come one at a time (see [24]). Finally, this metric has the

advantage to require only the number of containers per stack and avoids creating high

stacks. From now on, the cost-to-go function is taken to be the expected number of

blocking containers in the block.

Formally, we define 𝛼𝑧 to be the expected number of blocking containers in a stack

of 𝑧 containers in the case where no information is available. From [25] (and Section

3.4), we have 𝛼0 = 0 and

𝛼𝑧 = 𝑧 −
𝑧∑︁

𝑖=1

1

𝑖
, ∀𝑧 ∈ {1, . . . , 𝑍}. (5.1)

Now, consider that after performing all 𝑁 requests, the height of stack 𝑠 ∈ 𝒮𝐵 is

denoted by 𝑧𝑓𝑠 ∈ {0, . . . , 𝑍}. Then, using the previous notation, the cost to go which

is the expected total number of blocking containers can be computed as

cost-to-go =
∑︁
𝑠∈𝒮𝐵

𝛼𝑧𝑓𝑠
. (5.2)

137

Let 𝛾 > 0 be the importance/conversion factor between future relocations and

current crane travel time. Using a classic scalarization technique, by minimizing

Objective function = immediate cost + 𝛾 × cost-to-go, (5.3)

we balance the objective between greedily minimizing immediate cost and minimizing

the cost-to-go. Note that 𝛾 = 0 means that we only minimize immediate cost, while

𝛾 →∞ implies minimizing the expected number of relocations, hence it is equivalent

to the leveling heuristic.

5.3 Binary Integer Program and Theoretical Prop-

erties

This section presents an exact method to solve the YSC problem with storage and

relocation location assignments. To formulate the problem as a binary IP, we first

describe the variables, then translate each constraint into linear equalities/inequalities

using these variables, and finally compute the objective function as a linear function of

the variables. Based on this formulation, we show that the integrality constraints of a

significant portion of the variables can be relaxed under Condition (A) for 𝛾, described

in page 16. Before stating the mathematical formulation, we present concisely the

main notations of Section 5.2:

◇ (𝑋, 𝑌, 𝑍): dimensions of the block

◇ 𝑁 : number of productive requests, indexed by arrival order.

◇ 𝒩𝑠: indices corresponding to storage requests.

◇ 𝒩𝑟: indices corresponding to retrieval requests.

◇ 𝑁 : total number of requests to perform all 𝑁 productive requests.

◇ 𝒩𝑢: indices corresponding to unproductive requests.

138

For each request 𝑛 ∈ {1, . . . , 𝑁}, we are given:

◇ 𝐿𝑛: set of stacks from which container 𝑛 can be picked up by the crane.

◇ 𝐸𝑛: set of stacks onto which container 𝑛 can be put down by the crane.

◇ (𝛿−𝑛 , 𝛿
+
𝑛): flexibility of request 𝑛.

◇ 𝑏𝑛: container directly blocking container 𝑛. If 𝑛 is on top of its stack, 𝑏𝑛 = 0.

There are several stacks of interest:

◇ 𝑠𝑖: initial position of the crane.

◇ 𝒮𝐵: set of stacks in the block.

◇ 𝒮𝑅: set of stacks in the block where there is at least one container to be retrieved.

◇ 𝒮(𝐿): set of stacks from which the crane can start a loaded drive.

◇ 𝒮(𝐸): set of stacks from which the crane can start an empty drive.

Finally, we are given:

◇ 𝑚𝑟: lowest container to be retrieved in stack 𝑟 ∈ 𝒮𝑅.

◇ ∼
𝑧𝑟: number of containers in stack 𝑟 ∈ 𝒮𝐵 after all containers have been retrieved

and none has been stored or relocated.

◇ 𝑡(𝐿)𝑠𝑟 : cost of a loaded drive of the crane from stack 𝑠 ∈ 𝒮(𝐿) to stack 𝑟 ∈ 𝒮(𝐸).

◇ 𝑡(𝐸)
𝑟𝑠 : cost of an empty drive of the crane from stack 𝑟 ∈ 𝒮(𝐸) to stack 𝑠 ∈ 𝒮(𝐿).

◇ 𝛾: weight on the cost-to-go.

◇ 𝛼𝑧: expected number of blocking containers in a stack with 𝑧 containers.

◇ 𝑣𝑧: harmonic mean of the vertical speeds with and without containers.

139

5.3.1 Formulation

Variables

The mathematical formulation introduced in this chapter uses the following binary

variables (∈ {0, 1}).

∙ 𝑤𝑛𝑠𝑘 indicates that container 𝑛 is moved (retrieved, stored or relocated) from

stack 𝑠 during crane cycle 𝑘. This type of variable is defined ∀ 𝑛 ∈
{︀
1, . . . , 𝑁

}︀
,

∀ 𝑠 ∈ 𝐿𝑛, ∀ 𝑘 ∈
{︀
1, . . . , 𝑁

}︀
.

∙ 𝑑𝑖𝑠 indicates that the crane has an empty drive from its initial position 𝑠𝑖 to

stack 𝑠 during the first cycle. These are defined ∀ 𝑠 ∈ 𝒮(𝐿).

∙ 𝑑(𝐸)
𝑟𝑠𝑘 indicates that the crane has an empty drive from stack 𝑟 to stack 𝑠 during its

𝑘𝑡ℎ cycle. These variables are defined ∀ 𝑟 ∈ 𝒮(𝐸), ∀ 𝑠 ∈ 𝒮(𝐿), ∀ 𝑘 ∈
{︀
2, . . . , 𝑁

}︀
.

∙ 𝑑(𝐿)𝑠𝑟𝑘 indicates that the crane has a loaded drive from stack 𝑠 to stack 𝑟 during

its 𝑘𝑡ℎ cycle , and is defined ∀ 𝑠 ∈ 𝒮(𝐿), ∀ 𝑟 ∈ 𝒮(𝐸), ∀ 𝑘 ∈
{︀
1, . . . , 𝑁

}︀
.

∙ 𝑓𝑟𝑧 indicates that there are 𝑧 containers in stack 𝑟 after the 𝑁 requests are per-

formed. This last type of variable is defined ∀ 𝑟 ∈ 𝒮(𝐸)∩𝒮𝐵, ∀ 𝑧 ∈
{︁

∼
𝑧𝑟, . . . , 𝑍

}︁
.

Indeed, a stack can receive a stored or relocated container only if it is both a

potential ending stack for loaded drives (i.e., 𝒮(𝐸)) and in the block (i.e., 𝒮𝐵).

In addition, ∼
𝑧𝑟 is defined to be a lower bound on the final number of containers

in stack 𝑟.

Constraints

First, we denote by 𝐷 the set of variables
(︀
𝑑𝑖, 𝑑(𝐸), 𝑑(𝐿), 𝑓

)︀
. We denote the feasible

polyhedron of our problem by 𝒫 such that our feasible set is by definition (𝑤,𝐷) ∈
𝒫 ∩ {0, 1}. We decompose 𝒫 as follows:

𝒫 =𝒲 ∩𝒟 ∩ ℒ,

140

where 𝒲 is a polyhedron corresponding to constraints involving only 𝑤 variables,

and 𝒟 to constraints involving only variables in 𝐷. Finally, ℒ is the polyhedron

corresponding to constraints linking 𝑤 and the variables in 𝐷 (in particular 𝑑(𝐿)). We

describe these three polyhedra in detail.

The polyhedron 𝒲. This polyhedron is defined by three types of constraints. We

say 𝑤 ∈ 𝒲 if it verifies Equations (5.4)-(5.6).

Assignment of requests to crane cycles – Each container must be moved (delivered,

stored or relocated) during a unique crane cycle and each crane cycle must perform

exactly one request:

∀ 𝑛 ∈ {1, . . . , 𝑁},
∑︁
𝑠∈𝐿𝑛

𝑘∈{1,...,𝑁}

𝑤𝑛𝑠𝑘 = 1, (5.4a)

∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁

𝑛∈{1,...,𝑁}
𝑠∈𝐿𝑛

𝑤𝑛𝑠𝑘 = 1. (5.4b)

Precedence constraints – Container 𝑛 ∈ 𝒩𝑟 ∪𝒩𝑢 associated with a retrieval or re-

location request, cannot be moved during cycle 𝑘 ∈ {1, . . . , 𝑁}, if there is a container

blocking it (𝑏𝑛 ̸= 0), and container 𝑏𝑛 has not been previously moved (e.g., containers

4 and 9 in Figure 5-3):

∀ 𝑛 ∈ {𝑛′ ∈ 𝒩𝑟 ∪𝒩𝑢 | 𝑏𝑛′ ̸= 0} , ∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁
𝑠∈𝐿𝑛

𝑤𝑛𝑠𝑘 −
∑︁
𝑠∈𝐿𝑏𝑛

𝑘′∈{1,...,𝑘−1}

𝑤𝑏𝑛𝑠𝑘′ 6 0, (5.5)

where the second sum is 0 when 𝑘 = 1.

Order constraints – Recall that by definition of the flexibility of a productive

request 𝑛 ∈ {1, . . . , 𝑁}, this request has to be served between the 𝑛−𝛿−𝑛 -th productive

request and the 𝑛 + 𝛿+𝑛 -th productive request. An equivalent reformulation is that

productive request 𝑛 can have at most 𝑛+𝛿+𝑛 −1 productive requests served before it,

and at most 𝑁 −𝑛+ 𝛿−𝑛 productive requests after it, which is how the last constraints

141

are formulated below:

∀ 𝑛 ∈ {1, . . . , 𝑁}, ∀ 𝑘 ∈ {𝑛+ 𝛿+𝑛 + 1, . . . , 𝑁},∑︁
𝑛′∈{1,...,𝑁}

𝑠′∈𝐿𝑛′
𝑘′∈{1,...,𝑘−1}

𝑤𝑛′𝑠′𝑘′ +
(︀
𝑘 −

(︀
𝑛+ 𝛿+𝑛

)︀)︀
×
∑︁
𝑠∈𝐿𝑛

𝑤𝑛𝑠𝑘 6 𝑘 − 1, (5.6a)

∀ 𝑛 ∈ {1, . . . , 𝑁}, ∀ 𝑘 ∈ {1, . . . , 𝑁 − (𝑁 − 𝑛+ 𝛿−𝑛)− 1},∑︁
𝑛′∈{1,...,𝑁}

𝑠′∈𝐿𝑛′
𝑘′∈{𝑘+1,...,𝑁}

𝑤𝑛′𝑠′𝑘′ +
(︀
𝑁 − 𝑘 −

(︀
𝑁 − 𝑛+ 𝛿−𝑛

)︀)︀
×
∑︁
𝑠∈𝐿𝑛

𝑤𝑛𝑠𝑘 6 𝑁 − 𝑘. (5.6b)

The polyhedron 𝒟. This polyhedron is defined by six types of constraints. We

say 𝐷 ∈ 𝒟 if it verifies Equations (5.7)-(5.12).

Uniqueness of empty drive – The crane can only have one empty drive for each

cycle (the first being slightly different as the cycle has to start at the initial position

of the crane 𝑠𝑖):

∑︁
𝑠∈𝑆(𝐿)

𝑑𝑖𝑠 = 1, (5.7a)

∀ 𝑘 ∈ {2, . . . , 𝑁},
∑︁

𝑟∈𝒮(𝐸)

𝑠∈𝒮(𝐿)

𝑑
(𝐸)
𝑟𝑠𝑘 = 1. (5.7b)

Uniqueness of loaded drive – Similarly, the crane is only allowed one loaded drive

for each cycle:

∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁

𝑠∈𝒮(𝐿)

𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝑠𝑟𝑘 = 1. (5.8)

“Conservation of flow” after an empty drive – During crane cycle 𝑘, if the crane

empty drive ends in stack 𝑠 to pick up a container, then the loaded drive for this cycle

142

should start from stack 𝑠:

∀𝑠 ∈ 𝒮(𝐿),
∑︁

𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝑠𝑟1 − 𝑑𝑖𝑠 = 0, (5.9a)

∀𝑠 ∈ 𝒮(𝐿), ∀ 𝑘 ∈ {2, . . . , 𝑁},
∑︁

𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝑠𝑟𝑘 −

∑︁
𝑟∈𝒮(𝐸)

𝑑
(𝐸)
𝑟𝑠𝑘 = 0. (5.9b)

“Conservation of flow” after a loaded drive – Similarly, if during crane cycle 𝑘−1,

the crane loaded drive ends in stack 𝑟, then the crane empty drive for cycle 𝑘 should

start from stack 𝑟:

∀𝑟 ∈ 𝒮(𝐸), ∀ 𝑘 ∈ {2, . . . , 𝑁},
∑︁

𝑠∈𝒮(𝐿)

𝑑
(𝐸)
𝑟𝑠𝑘 −

∑︁
𝑠∈𝒮(𝐿)

𝑑
(𝐿)
𝑠,𝑟,𝑘−1 = 0. (5.10)

Uniqueness of final number of containers – Because the final number of containers

in stack 𝑟 is encoded into binary variables, we need to insure that only one integer

(i.e., one variable) is selected:

∀ 𝑟 ∈ 𝒮(𝐸) ∩ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑓𝑟𝑧 = 1. (5.11)

Final number of containers – For each stack 𝑟 in the block where a loaded drive

of the crane can end, the final number of containers in stack 𝑟 can be computed

directly as
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧. This term has to be equal to the sum of two other terms:

the number of containers in 𝑟 after all containers have been retrieved and before any

container is stored or relocated (i.e., ∼
𝑧𝑟) and the total number of crane loaded drives

ending on stack 𝑟 over the 𝑁 crane cycles. Thus,

∀ 𝑟 ∈ 𝒮(𝐸) ∩ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧 −
∑︁

𝑠∈𝒮(𝐿)

𝑘∈{1,...,𝑁}

𝑑
(𝐿)
𝑠𝑟𝑘 =

∼
𝑧𝑟. (5.12)

The polyhedron ℒ. Finally, we describe the two types of inequalities defining ℒ
that involve variables 𝑤 and 𝐷 (𝑑(𝐿) specifically). We say that (𝑤,𝐷) ∈ ℒ if (𝑤,𝐷)

verify Equations (5.13)-(5.14).

143

Enforcing loaded drive – If container 𝑛 is moved from stack 𝑠 during crane cycle

𝑘, then the crane loaded drive of cycle 𝑘 must start from 𝑠 and end in a stack in 𝐸𝑛:

∀ 𝑛 ∈ {1, . . . , 𝑁}, ∀ 𝑠 ∈ 𝐿𝑛, ∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁
𝑟∈𝐸𝑛

𝑑
(𝐿)
𝑠𝑟𝑘 − 𝑤𝑛𝑠𝑘 > 0. (5.13)

Precedence relation between last retrieval and storage/relocation location assign-

ments – Based on our assumption in Section 5.2, if 𝑟 is a stack from which there is

at least one retrieval request, then we assume that until 𝑚𝑟 has been retrieved, no

container can be stored or relocated to stack 𝑟 (recall that 𝑚𝑟 is the lowest container

in stack 𝑟 that needs to be retrieved):

∀ 𝑟 ∈ 𝒮𝑅, ∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁

𝑠∈𝒮(𝐿)

𝑑
(𝐿)
𝑠𝑟𝑘 −

∑︁
𝑘′∈{1,...,𝑘−1}

𝑤𝑚𝑟𝑟𝑘′ 6 0. (5.14)

Objective function

We now formulate Equation (5.3) as a linear function of the previous binary variables.

We use the fact if 𝑧𝑓𝑟 denotes the number of containers in stack 𝑟 after all 𝑁 requests,

then for any function ℎ (.) we have ℎ
(︀
𝑧𝑓𝑟
)︀
=

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

ℎ(𝑧)𝑓𝑟𝑧. Moreover, if 𝑟 is a

stack in the block but where no crane loaded drive can end, then its final number of

containers is necessarily the number of containers after all retrievals have been done,

i.e., if 𝑟 ∈ 𝒮𝐵 ∖ 𝒮(𝐸), then 𝑧𝑓𝑟 =
∼
𝑧𝑟. Using these two observations, the cost-to-go has a

constant part equal to
∑︀

𝑟∈𝒮𝐵∖𝒮(𝐸) 𝛼∼
𝑧𝑟

and a variable part which can be expressed as:

∑︁
𝑟∈𝒮(𝐸)∩𝒮𝐵

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝛼𝑧𝑓𝑟𝑧, (5.15)

where 𝛼𝑧 is defined in Equation (5.1).

Now we focus on expressing the immediate cost, which is the total travel time of

the crane to perform the 𝑁 requests. As explained in Figure 5-2, each cycle can be

decomposed in four phases (empty drive, pick-up, loaded drive and put-down), which

we now express mathematically:

144

Empty drives – For the first cycle, it is identified by variables 𝑑𝑖𝑟. By definition

the empty first drive starts at stack 𝑠𝑖 such that the cost of the first empty drive is

given by ∑︁
𝑟∈𝒮(𝐿)

𝑡
(𝐸)

𝑠𝑖𝑟
𝑑𝑖𝑟. (5.16)

For other cycles, the empty drives are indicated by variables 𝑑(𝐸)
𝑟𝑠𝑘 , each with costs

𝑡
(𝐸)
𝑟𝑠 , so the cost of all other empty drives is equal to

∑︁
𝑟∈𝒮(𝐸)

𝑠∈𝒮(𝐿)

𝑘∈{2,...,𝑁}

𝑡(𝐸)
𝑟𝑠 𝑑

(𝐸)
𝑟𝑠𝑘 . (5.17)

Loaded drives – Similarly to the empty drives, the cost of all loaded drives can be

expressed as ∑︁
𝑠∈𝒮(𝐿)

𝑟∈𝒮(𝐸)

𝑘∈{1,...,𝑁}

𝑡(𝐿)𝑠𝑟 𝑑
(𝐿)
𝑠𝑟𝑘. (5.18)

Pick-ups and put-downs – As we pointed out in Section 5.2, both these operations

are assumed to have the same cost structure (one loaded vertical move, one empty

vertical move and one handling time). Thus we compute their total cost jointly as

follows.

Depending on the type of the request that is performed, these costs can either be

constant (i.e., independent on the variables) or not. For 𝑛 ∈ 𝒩𝑟, both pick up and

put down costs are constant. Indeed, the pick-up has to be done from tier 𝑧𝑛 and the

container has to be put down at one I/O point (on the floor, i.e., tier 1). Thus, the

cost of the pick-up is 𝑡(𝐻) (𝑧𝑛) and the cost of put-down is 𝑡(𝐻) (1). For 𝑛 ∈ 𝒩𝑠, the

pick-up has to occur at one I/O point so the cost of pick-up is constant, i.e., 𝑡(𝐻) (1).

However, the cost of putting down a stored container depends on the selected stack,

hence is variable. Let us denote 𝑣(𝑛) the tier at which container 𝑛 is stored, then

the cost of putting down a stored container is given by 𝑡(𝐻) (𝑣(𝑛)). Similarly, for

𝑛 ∈ 𝒩𝑢, the cost of pick-up is constant, i.e., 𝑡(𝐻) (𝑧𝑛) but the cost of putting down a

relocated container depends on the selected stack, i.e., 𝑡(𝐻) (𝑣(𝑛)) if 𝑣(𝑛) the tier at

145

which container 𝑛 is relocated. We summarize this analysis in Table 5.1.

𝑛 𝒩𝑟 𝒩𝑠 𝒩𝑢

Pick-up cost 𝑡𝐻(𝑧𝑛) 𝑡𝐻(1) 𝑡𝐻(𝑧𝑛)
Put-down cost 𝑡𝐻(1) 𝑡𝐻(𝑣(𝑛)) 𝑡𝐻(𝑣(𝑛))

Table 5.1: Pick-up and put-down costs for different types of requests. Terms in bold
identify the variable costs.

In summary, the variable part is

∑︁
𝑛∈𝒩𝑠∪𝒩𝑢

𝑡(𝐻) (𝑣(𝑛)) .

Recall that we have 𝑡(𝐻) (𝑣(𝑛)) =
2(𝑍 + 1− 𝑣(𝑛))

𝑣𝑧
+ 𝑡ℎ. Therefore, there is a constant

part computed as 𝐶 =
∑︁

𝑛∈𝒩𝑟∪𝒩𝑢

𝑡(𝐻) (𝑧𝑛)+ |𝒩𝑟 ∪𝒩𝑠|××𝑡(𝐻) (1)+ |𝒩𝑠 ∪𝒩𝑢|× 𝑡(𝐻) (0),

while the variable part can be expressed as

− 2

𝑣𝑧
×

∑︁
𝑛∈𝒩𝑠∪𝒩𝑢

𝑣(𝑛).

The next lemma shows how to express this cost in terms of the final number of

containers per stack, i.e.,
(︀
𝑧𝑓𝑟
)︀
𝑟∈𝒮𝐵

(the proof is in Appendix).

Lemma 11. Let 𝑛 ∈ 𝒩𝑠 ∪𝒩𝑢. Let 𝑣(𝑛) be the tier at which container 𝑛 is stored or

relocated when performing request 𝑛 and 𝑧𝑓𝑟 the number of containers in stack 𝑟 after

performing all 𝑁 requests, then we have

∑︁
𝑛∈𝒩𝑠∪𝒩𝑢

𝑣(𝑛) =
1

2

∑︁
𝑟∈𝒮(𝐸)∩𝒮𝐵

𝑧𝑓𝑟
(︀
𝑧𝑓𝑟 + 1

)︀
− 1

2

∑︁
𝑟∈𝒮(𝐸)∩𝒮𝐵

∼
𝑧𝑟

(︁
∼
𝑧𝑟 + 1

)︁
.

Using Lemma 11, we add the second term to the constant to get 𝐶 ′ = 𝐶 +
1

𝑣𝑧

∑︁
𝑟∈𝒮(𝐸)∩𝒮𝐵

∼
𝑧𝑟

(︁
∼
𝑧𝑟 + 1

)︁
. Using the same observation as that for the cost-to-go, the

146

variable part of the cost to pick up and put down all containers is:

−
∑︁

𝑟∈𝒮(𝐸)∩𝒮𝐵

𝑧∈{∼
𝑧𝑟,...,𝑍}

1

𝑣𝑧
𝑧 (𝑧 + 1) 𝑓𝑟𝑧. (5.19)

Combining Equations (5.16)-(5.19), we can write the objective function as

∑︁
𝑠∈𝒮(𝐿)

𝑡
(𝐸)

𝑠𝑖𝑠
𝑑𝑖𝑠 +

∑︁
𝑟∈𝒮(𝐸)

𝑠∈𝒮(𝐿)

𝑘∈{2,...,𝑁}

𝑡(𝐸)
𝑟𝑠 𝑑

(𝐸)
𝑟𝑠𝑘 +

∑︁
𝑠∈𝒮(𝐿)

𝑟∈𝒮(𝐸)

𝑘∈{1,...,𝑁}

𝑡(𝐿)𝑠𝑟 𝑑
(𝐿)
𝑠𝑟𝑘 +

∑︁
𝑟∈𝒮(𝐸)∩𝒮𝐵

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝛽𝑧𝑓𝑟𝑧, (5.20)

where

𝛽𝑧 = 𝛾 × 𝛼𝑧 −
1

𝑣𝑧
𝑧 (𝑧 + 1) = 𝛾 ×

(︃
𝑧 −

𝑧∑︁
𝑖=1

1

𝑖

)︃
− 1

𝑣𝑧
𝑧 (𝑧 + 1) . (5.21)

Note that the objective function defined in Equation (5.20) only depends on variables

in 𝐷 and not 𝑤. Thus for the sake of clarity, we can also express this objective

function as 𝑐𝑇𝐷 where 𝑐 are the corresponding costs for each variable in 𝐷.

Condition (A). For the remaining of the chapter, we say that 𝛾 verifies Condition

(A) if

𝛾 >
2𝑍(𝑍 − 1)

𝑣𝑧
. (5.22)

Lemma 12. Let 𝛾 verify Condition (A), 𝑧, 𝑧1, 𝑧2 ∈ {0, . . . , 𝑍} such that 𝑧2 < 𝑧 < 𝑧1,

then we have
𝑧 − 𝑧2
𝑧1 − 𝑧2

𝛽𝑧1 +
𝑧1 − 𝑧
𝑧1 − 𝑧2

𝛽𝑧2 > 𝛽𝑧.

Summary of formulation

In conclusion, we can formulate our problem as

min
(𝑤,𝐷)∈𝒫∩{0,1}

(︀
𝑐𝑇𝐷

)︀
.

147

Using the decomposition of 𝒫 , this formulation can also be written as

min
(𝑤,𝐷)∈{0,1}

(︀
𝑐𝑇𝐷

)︀
Equation (5.20)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑤 ∈ 𝒲
𝐷 ∈ 𝒟
(𝑤,𝐷) ∈ ℒ

Equations (5.4)-(5.6)

Equations (5.7)-(5.12)

Equations (5.13)-(5.14)

5.3.2 Relaxation of Integrality Conditions

Definition 1. Let 𝑃 and 𝑃 ′ be two optimization problems. We say that 𝑃 and 𝑃 ′

are equivalent if there exists a transformation from any optimal solution of 𝑃 to an

optimal solution of 𝑃 ′ and vice versa.

Using the structure of the previous mathematical formulation, we now prove that,

if 𝛾 verifies Condition (A), we can relax the integrality constraints for variables in

𝐷 and still get an integral solution. The process has two steps: first, given some

𝑤 ∈ 𝒲 ∩ {0, 1}, we formulate the subproblem as an equivalent binary IP that has

a simpler structure. Then, we show that, given that 𝛾 verifies Condition (A), any

optimal extreme point of the relaxation of the simpler formulation is integral. This

implies that, given 𝑤 ∈ 𝒲 ∩{0, 1}, the subproblem can be solved in polynomial time

as we just have to solve a linear program. Formally, let us consider

∀ 𝑤 ∈ 𝒲 , ℒ(𝑤) = {𝐷 ∈ 𝒟 | (𝑤,𝐷) ∈ ℒ and 0 6 𝐷 6 1} .

Using this definition, we can re-write the original problem as:

min
𝑤∈𝒲∩{0,1}

(︂
min

𝐷∈ℒ(𝑤)∩{0,1}

(︀
𝑐𝑇𝐷

)︀)︂
.

Let 𝑤 ∈ 𝒲 ∩ {0, 1}, consider Π(𝑤) to be the subproblem associated with 𝑤 and

defined as

min
𝐷∈ℒ(𝑤)∩{0,1}

(︀
𝑐𝑇𝐷

)︀
.

In the first step, we reformulate Π(𝑤) in an equivalent subproblem denoted by Π(𝑤)

148

and defined as

min
𝐷∈ℒ(𝑤)∩{0,1}

(︀
𝑐𝑇𝐷

)︀
,

such that Π(𝑤) is simpler to analyze than Π(𝑤). Under Condition (A), we show that

any optimal extreme point of ℒ(𝑤) is integral. Consequently, Π(𝑤) is equivalent to

its linear programming relaxation denoted by Π𝐿(𝑤) and defined as

min
𝐷∈ℒ(𝑤)

(︀
𝑐𝑇𝐷

)︀
.

In conclusion, since the linear program Π𝐿(𝑤) is equivalent to Π(𝑤), then Π(𝑤) can

be solved in polynomial time.

Subproblem reformulation

Let 𝑤 ∈ 𝒲 ∩ {0, 1}, we now define problem Π(𝑤) equivalent to Π(𝑤) but with a

simpler structure. To do so, we define some notations:

∀ 𝑘 ∈ {1, . . . , 𝑁}, (𝜈𝑘, 𝜎𝑘) =
{︀
(𝑛, 𝑠) ∈ {1, . . . , 𝑁} × 𝒮(𝐿) | 𝑠 ∈ 𝐿𝑛 and 𝑤𝑛𝑠𝑘 = 1

}︀
. (5.23)

Here (𝜈𝑘, 𝜎𝑘) represent the indices of the request performed at stage 𝑘 and the stack

from which this request is performed. Note that these are clearly unique for each

𝑘 ∈ {1, . . . , 𝑁} since 𝑤 ∈ 𝒲 ∩ {0, 1}. Using these notations, we can define

∀ 𝑘 ∈ {1, . . . , 𝑁}, 𝐸𝜈𝑘 =

⎧⎨⎩𝑟 ∈ 𝐸𝜈𝑘

⃒⃒⃒⃒
⃒⃒ (𝑟 /∈ 𝒮𝑅) or

(𝑟 ∈ 𝒮𝑅 and ∃ 𝑘′ ∈ {1, . . . , 𝑘 − 1} s.t. 𝜈𝑘′ = 𝑚𝑟)

⎫⎬⎭ (5.24)

where 𝐸𝜈𝑘 is a subset of stacks in 𝐸𝜈𝑘 where a request can end. In addition, it

disregards stacks 𝑟 ∈ 𝒮𝑅 for which 𝑚𝑟 has not been retrieved before stage 𝑘. This

leads to

𝒮𝐵 = 𝒮(𝐸) ∩ 𝒮𝐵 ∩
⋃︁

𝑘∈{1,...,𝑁}

𝐸𝜈𝑘 , (5.25)

149

with 𝒮𝐵 the set of stacks where requests can end given 𝑤. Only these stacks are going

to have a number of containers that is different from ∼
𝑧𝑟. Finally, we consider

∀ 𝑟 ∈ 𝒮𝐵, 𝐾𝑟 =
{︀
𝑘 ∈ {1, . . . , 𝑁}

⃒⃒
𝑟 ∈ 𝐸𝜈𝑘

}︀
, (5.26)

which corresponds to the set of stages where a container can be stored or relocated to

stack 𝑟. Based on these notations, we consider Π(𝑤) to be the following optimization

problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(𝑑,𝑓)∈{0,1}

⎛⎜⎜⎜⎝ ∑︁
𝑘∈{1,...,𝑁}

𝑟∈𝐸𝜈𝑘

𝑡𝑟𝑘𝑑𝑟𝑘 +
∑︁
𝑟∈𝒮𝐵

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝛽𝑧𝑓 𝑟𝑧

⎞⎟⎟⎟⎠

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁
𝑟∈𝐸𝜈𝑘

𝑑𝑟𝑘 = 1,

∀ 𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑓 𝑟𝑧 = 1,

∀ 𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓 𝑟𝑧 −
∑︁
𝑘∈𝐾𝑟

𝑑𝑟𝑘 =
∼
𝑧𝑟,

where

∀ 𝑘 ∈ {1, . . . , 𝑁}, ∀ 𝑟 ∈ 𝐸𝜈𝑘 , 𝑡𝑟𝑘 =

⎧⎨⎩ 𝑡
(𝐿)
𝜎𝑘𝑟 + 𝑡

(𝐸)
𝑟𝜎𝑘+1 if 𝑘 < 𝑁,

𝑡
(𝐿)
𝜎𝑁𝑟 otherwise.

Note that this problem depends on 𝑤 through 𝜈 which define 𝐸𝜈𝑘 and 𝑆𝐵, as well as

𝜎 defining 𝑡.

For the sake of clarity, let us define 𝐷 =
(︀
𝑑, 𝑓
)︀

and 𝑐 as the associated cost in

Π(𝑤). Finally, ℒ(𝑤) be the feasible set of Π(𝑤) without the integrality constraints.

The next lemma states that Π(𝑤) and Π(𝑤) are equivalent problems.

Lemma 13. Let 𝑤 ∈ 𝒲 ∩ {0, 1}. Let Π(𝑤) be the optimization problem defined as

min
𝐷∈ℒ(𝑤)∩{0,1}

(︀
𝑐𝑇𝐷

)︀
,

150

and Π(𝑤) the optimization problem defined as

min
𝐷∈ℒ(𝑤)∩{0,1}

(︀
𝑐𝑇𝐷

)︀
,

then Π(𝑤) and Π(𝑤) are equivalent problems.

Sketch of the proof. The proof is provided in Appendix and is in three parts. We

first show that there are 9 types of implied constraints for Π(𝑤). Second, we prove

that these implied constraints are sufficient, in the sense that all original constraints

of Π(𝑤) can be formulated using linear combinations of implied constraints. Third,

implied constraints fix a subset of variables to 0 or 1. Therefore, these variables can be

deleted from the formulation since they are constants for this problem. In addition,

we reduce the final number of variables by using another implied constraint, thus

obtaining Π(𝑤).

The following formula provides the transformation between a solution of Π(𝑤)

and Π(𝑤) (variables not mentioned in the formula are equal to 0):

𝑑𝜎1 = 1,

𝑓
𝑟
∼
𝑧𝑟
= 1, ∀ 𝑟 ∈

(︀
𝒮(𝐸) ∩ 𝒮𝐵

)︀
∖ 𝒮𝐵,

𝑑
(𝐸)
𝑟𝜎𝑘𝑘

= 𝑑𝑟,𝑘−1, ∀ 𝑘 ∈ {2, . . . , 𝑁}, ∀ 𝑟 ∈ 𝐸𝜈𝑘−1
,

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

= 𝑑𝑟𝑘, ∀ 𝑘 ∈ {1, . . . , 𝑁}, ∀ 𝑟 ∈ 𝐸𝜈𝑘 ,

𝑓𝑟𝑧 = 𝑓 𝑟𝑧, ∀ 𝑟 ∈ 𝒮𝐵, ∀ 𝑧 ∈ {
∼
𝑧𝑟, . . . , 𝑍}

(5.27)

Integrality of Π(𝑤)

The next two main theorems show that,

∙ any extreme point 𝐷* = (𝑑*, 𝑓 *) of ℒ(𝑤) is such that 𝑑* ∈ {0, 1}.

151

∙ if this extreme point is optimal and 𝛾 verifies Condition (A), then 𝑓 * ∈ {0, 1}.

Theorem 3. Let 𝑤 ∈ 𝒲 ∩ {0, 1} and 𝐷* = (𝑑*, 𝑓 *) be an extreme point of ℒ(𝑤),
then

𝑑* ∈ {0, 1}.

Sketch of the proof. The proof is provided in Appendix. We suppose by contradiction

that 𝑑* /∈ {0, 1}, thus there exists 𝑝, 𝑙 such that 𝑑*𝑝𝑙 /∈ {0, 1}. We show that there exists

𝑞 such that 𝑑*𝑞𝑙 /∈ {0, 1} and two main cases arise. In each case, we construct 𝐷1, 𝐷2

such that 𝐷1, 𝐷2 ∈ ℒ(𝑤), 𝐷1 ̸= 𝐷2 ̸= 𝐷* and 𝐷* =
1

2

(︀
𝐷1 +𝐷2

)︀
which provides a

contradiction to 𝐷* being an extreme point. The two cases are:

1. If the request performed during crane cycle 𝑙 is a retrieval, then 𝑝 and 𝑞 are I/O

points and we can easily construct 𝐷1 and 𝐷2.

2. If the request performed during crane cycle 𝑙 is not a retrieval, then constructing

𝐷1 and 𝐷2 is not straightforward and requires the proof of a technical lemma

(see Lemma 14 in Appendix).

Theorem 4. Let 𝑤 ∈ 𝒲 ∩ {0, 1}. If 𝐷* is an extreme point of ℒ(𝑤) such that

𝐷* = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐷∈ℒ(𝑤)

(︀
𝑐𝑇𝐷

)︀
and 𝛾 verifies Condition (A), then

𝐷* ∈ {0, 1}.

152

Consequently, since Π(𝑤) and Π(𝑤) are equivalent problems, then Π(𝑤) can be solved

by solving the linear program Π𝐿(𝑤) defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
06(𝑑,𝑓)61

⎛⎜⎜⎜⎝ ∑︁
𝑘∈{1,...,𝑁}

𝑟∈𝐸𝜈𝑘

𝑡𝑟𝑘𝑑𝑟𝑘 +
∑︁
𝑟∈𝒮𝐵

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝛽𝑧𝑓 𝑟𝑧

⎞⎟⎟⎟⎠

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁
𝑟∈𝐸𝜈𝑘

𝑑𝑟𝑘 = 1,

∀ 𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑓 𝑟𝑧 = 1,

∀ 𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓 𝑟𝑧 −
∑︁
𝑘∈𝐾𝑟

𝑑𝑟𝑘 =
∼
𝑧𝑟,

(5.28)

In conclusion, this section provides the first mathematical formulation to solve effi-

ciently the scheduling of retrieval and storage requests while routing the crane and

taking into account relocations and storage locations assignments. This mathemati-

cal formulation has two types of variables 𝑤 and 𝐷. 𝑤 corresponds to the scheduling

of the requests as well as fixing the loading stacks for storage requests, while 𝐷 indi-

cates the routing of the crane. The dimension of 𝑤 is of the order to 𝑁2
𝑀 (typically

hundreds or thousands) while 𝐷 has a dimension of (𝑋𝑌)2𝑁 (typically hundreds of

thousands or millions).

In this section, we have shown that given a binary vector 𝑤 ∈ 𝒲 ∩ {0, 1}, we can

relax the integrality constraints on 𝐷 and still get a integer solution by solving the

linear program Π𝐿(𝑤). Consider 𝑔(𝑤) to be the optimal objective function of Π𝐿(𝑤),

then our initial problem can be formulated as

min
𝑤∈𝒲∩{0,1}

(𝑔(𝑤)) . (5.29)

Therefore, since 𝑔(𝑤) can be evaluated in polynomial time, solving our problem can be

reduced to designing an efficient search algorithm on𝒲∩{0, 1}. Since the dimension

of 𝒲 is relatively much lower than the original feasible space 𝒫 , we show in the next

153

section how these results helps solving efficiently the original problem. In addition,

this new approach suggests a simple way to solve larger instances where, in the given

time limit, the IP could potentially only provide solutions with high cost or not even

get a feasible solution. Instead, one could use any meta heuristic search (simulated

annealing, genetic algorithms, tabu search, etc...) on the space 𝑤 ∈ 𝒲 ∩ {0, 1}.
These heuristics are expected to work better under this new approach than if these

were directly implemented for the original problem again due to the relatively small

dimension of 𝒲 .

Instead of investigating which common meta heuristic would work the best, we

provide a “simple” local search heuristic on 𝒲 ∩ {0, 1} that performs well on this

problem and which provides some intuition as well.

Case where 𝛾 does not verify condition (A). Theorem 3 shows that any ex-

treme point 𝐷* = (𝑑*, 𝑓 *) of ℒ(𝑤) is such that 𝑑* ∈ {0, 1}. Simple counter-examples

show that we could have 𝑓 * /∈ {0, 1}. Nevertheless, variables 𝑓 are only used to com-

pute the cost of a solution while actual decisions correspond to variables 𝑑*. Thus,

given 𝑤 ∈ 𝒱 ∩ {0, 1}, solving Π𝐿(𝑤) provides a feasible sequence of decisions as

𝑑* ∈ {0, 1}. Therefore, the heuristic provided in the next section, which tries to solve

the problem defined in Equation (5.29), can still be applied in real operations even in

the case where 𝛾 does not verify Condition (A). The difference with the original prob-

lem is that the part of the cost that involves the variables 𝑓 * could be underestimated

as we relax the integrality of 𝑓 *.

5.4 Heuristic Procedure for Real-Time Operations

Based on the analysis of the previous section, we now design an efficient heuristic

method to search the space𝒲∩{0, 1}. This section describes a randomized algorithm

which decomposes its search into two stages. The first stage takes an order of requests

as input and looks for a “good” set of starting stacks by sampling from a smaller

promising set of stacks. The second stage builds upon the first stage and searches

154

in the space of request orders by using a repeated-random-start local search. This

algorithm requires two integer inputs 𝑅1, 𝑅2 ∈ N respectively corresponding to the

number of samples in the first stage and the number of re-starts for the second stage.

5.4.1 Search Space Decomposition

First, we explain the reason to decompose our search strategy in two stages. Notice

that constraints defining 𝒲 only involve sums of 𝑤𝑛𝑠𝑘 over 𝑠 ∈ 𝐿𝑛. This motivates

the definition of the polyhedron 𝒱 . We say that 𝑣 ∈ 𝒱 if 𝑣 = (𝑣𝑛𝑘)𝑛,𝑘∈{1,...,𝑁} and 𝑣

verifies the following constraints:

∀ 𝑛 ∈ {1, . . . , 𝑁},
∑︁

𝑘∈{1,...,𝑁}

𝑣𝑛𝑘 = 1,

∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁

𝑛∈{1,...,𝑁}

𝑣𝑛𝑘 = 1.

∀ 𝑛 ∈ {𝑛′ ∈ 𝒩𝑟 ∪𝒩𝑢 | 𝑏𝑛′ ̸= 0} , ∀ 𝑘 ∈ {1, . . . , 𝑁}, 𝑣𝑛𝑘−
∑︁

𝑘′∈{1,...,𝑘−1}

𝑣𝑏𝑛𝑘′ 6 0, (5.30)

∀ 𝑛 ∈ {1, . . . , 𝑁}, ∀ 𝑘 ∈ {𝑛+ 𝛿+𝑛 + 1, . . . , 𝑁},∑︁
𝑛′∈{1,...,𝑁}
𝑘′∈{1,...,𝑘−1}

𝑣𝑛′𝑘′ +
(︀
𝑘 −

(︀
𝑛+ 𝛿+𝑛

)︀)︀
𝑣𝑛𝑘 6 𝑘 − 1,

∀ 𝑛 ∈ {1, . . . , 𝑁}, ∀ 𝑘 ∈ {1, . . . , 𝑁 − (𝑁 − 𝑛+ 𝛿−𝑛)− 1},∑︁
𝑛′∈{1,...,𝑁}

𝑘′∈{𝑘+1,...,𝑁}

𝑣𝑛′𝑘′ +
(︀
𝑁 − 𝑘 −

(︀
𝑁 − 𝑛+ 𝛿−𝑛

)︀)︀
𝑣𝑛𝑘 6 𝑁 − 𝑘.

Note that if 𝑣 ∈ 𝒱 , then for any 𝑤 such that 𝑣𝑛𝑘 =
∑︀

𝑠∈𝐿𝑛
𝑤𝑛𝑠𝑘 we have 𝑤 ∈ 𝒲 .

Therefore, we can reformulate the problem under the point of view of Equation (5.29)

into

min
𝑣∈𝒱∩{0,1}

⎛⎜⎝ min
𝑤∈{0,1}

𝑣𝑛𝑘=
∑︀

𝑠∈𝐿𝑛
𝑤𝑛𝑠𝑘

(𝑔(𝑤))

⎞⎟⎠ ,

155

which itself can be written as

min
𝑣∈𝒱∩{0,1}

(︂
min
𝜎∈𝐿

(ℎ(𝑣, 𝜎))

)︂
. (5.31)

where 𝐿 =
⨂︁

𝑛∈{1,...,𝑁}

𝐿𝑛 and ℎ(𝑣, 𝜎) = 𝑔 (𝑤), such that 𝑤𝑛𝑠𝑘 = 𝑣𝑛𝑘1 {𝑠 = 𝜎𝑛}. In this

last formulation, it is important to notice that by definition 𝐿𝑛 = {𝑠𝑛} for 𝑛 ∈ 𝒩𝑟∪𝒩𝑢,

hence 𝜎𝑛 is fixed, thus only 𝜎𝑛 for 𝑛 ∈ 𝒩𝑠 are actual variables. In conclusion, the

problem formulated in Equation (5.31) should be seen as a two-step process. First,

given 𝑣 ∈ 𝒱 ∩{0, 1}, the goal is to find 𝜎 where 𝜎𝑛 corresponds to the stack where the

loaded crane drive performing request 𝑛 starts that minimizes ℎ(𝑣, 𝜎). In a second

step, the goal is to find the best 𝑣 ∈ 𝒱 ∩ {0, 1}. The main reason to decompose

the problem in this way is that 𝜎 does not have any coupling constraints while 𝑣

is constrained in several ways (assignment, flexibility and precedence constraints).

Therefore we suggest to use two different search strategies for these two types of

variables.

5.4.2 First Stage: Restricted Sampling on 𝐿

In this section, we consider 𝑣 ∈ 𝒱 ∩ {0, 1} and we define

𝜅𝑛 =
{︀
𝑘 ∈ {1, . . . , 𝑁 | 𝑣𝑛𝑘 = 1

}︀
, ∀ 𝑛 ∈ {1, . . . , 𝑁}.

As we mentioned, the goal is to be able to compute efficiently the function

𝜑 (𝑣) = min
𝜎∈𝐿

(ℎ(𝑣, 𝜎)) .

Note that a greedy evaluation requires an exponential number of evaluations of the

function ℎ(𝑣, .) as |𝐿| =
∏︁
𝑛∈𝒩𝑠

|𝐿𝑛|. Instead, we approximate 𝜑(𝑣) by sampling several

promising 𝜎 and retain the best solution. The idea that we propose is to take advan-

tage of the LP relaxation of the binary integer program of Section 5.3 where we fix

the order of requests according to 𝑣. More specifically, consider the linear program

156

Λ(𝑣):

min
(𝑤,𝐷)

(︀
𝑐𝑇𝐷

)︀
Equation (5.20)

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐷 ∈ 𝒟
(𝑤,𝐷) ∈ ℒ∑︁
𝑠∈𝐿𝑛

𝑤𝑛𝑠𝜅𝑛 = 1

Equations (5.7)-(5.12)

Equations (5.13)-(5.14)

∀ 𝑛 ∈ {1, . . . , 𝑁}

where the last constraints insure that the order defined by 𝑣 is respected. Note that

this formulation can be sped up by setting some variables to zero (details are provided

in the Appendix). Let
(︀
𝑤Λ, 𝐷Λ

)︀
be an optimal solution of this linear program, then

we define 𝐿 (𝑣) such that

𝐿 (𝑣) =
{︀
𝜎 = (𝜎1, . . . , 𝜎𝑁) ∈ 𝐿

⃒⃒
𝑤Λ

𝑛𝜎𝑛𝜅𝑛
> 0, ∀ 𝑛 ∈ {1, . . . , 𝑁}

}︀
. (5.32)

We have noticed in the experiments that |𝐿 (𝑣)| is relatively small compared to |𝐿|.
Moreover, the selected stacks are indeed promising as they have been selected based

on the LP relaxation. The other advantage of this procedure is that 𝜆(𝑣) = 𝑐𝑇𝐷Λ

provides a lower bound on the best attainable cost when the order of requests is set

by 𝑣, which we will use in the 2𝑛𝑑 stage search. Given 𝐿 (𝑣) and 𝑤Λ, we sample

𝜎 = (𝜎1, . . . , 𝜎𝑁) using 𝑤Λ as weights such that we have

∀ 𝑛 ∈ {1, . . . , 𝑁},P [𝜎𝑛 = 𝑠] = 𝑤Λ
𝑛𝑠𝜅𝑛

and P [𝜎 = (𝑠1, . . . , 𝑠𝑁)] =
∏︁
𝑛

P [𝜎𝑛 = 𝑠𝑛] . (5.33)

Note that, thanks to the last constraint of Λ(𝑣), this is a well defined probability

distribution. In conclusion, given a certain 𝑣 ∈ 𝒱 ∩ {0, 1}, we can

1. Solve Λ(𝑣) to get 𝑤Λ and 𝜆(𝑣) = 𝑐𝑇𝐷Λ.

2. Use 𝑤Λ to define 𝐿(𝑣) from Equation (5.32) and a probability distribution on

this subset of 𝐿 from Equation (5.33).

3. Sample without replacement 𝑅′
1 = min {𝑅1, |𝐿 (𝑣′) |} points from the afore-

157

mentioned probability distribution over 𝐿(𝑣) (denoted by
(︀
𝜎1, . . . , 𝜎𝑅′

1

)︀
) and

compute

𝜓 (𝑣) = min
𝑟∈{1,...,𝑅′

1}
(ℎ(𝑣, 𝜎𝑟)) . (5.34)

First note that 𝜓 (𝑣) > 𝜑 (𝑣) almost surely. The purpose of 𝜓 (𝑣) is to provide a good

randomized approximation of 𝜑 (𝑣). As 𝑅1 → |𝐿 (𝑣)|, then 𝜓 (𝑣) → min
𝜎∈𝐿(𝑣)

(ℎ(𝑣, 𝜎))

almost surely. Thanks to the way 𝐿 (𝑣) is constructed, we empirically observe this

latter value to be close to 𝜑 (𝑣).

5.4.3 Second Stage: Repeated-Random-Start Local Search on

𝒱 ∩ {0, 1}

This algorithm is an adaptation of a classical local search algorithm which repeat-

edly starts from a random feasible solution and improves this solution until a local

minimum is reached. This algorithm is parameterized by 𝑅2, the number of repeated

random starts. Its output is the best local minimum that was found among the 𝑅2

explored ones. In this framework, we use the 1𝑠𝑡 stage procedure and an algorithm

for sampling on 𝒱 ∩ {0, 1} that we describe subsequently. The pseudocode of this

procedure is provided in Algorithm 4. Note that the definition of neighborhood is

given in the pseudocode of Algorithm 4 (lines 10-12). Let 𝑣(𝑖) be the current solution

of the local search. We consider two requests 𝑛 and 𝑚 such that 𝑛 < 𝑚 (line 10). We

then consider 𝑣′ such that the crane cycles of 𝑛 and 𝑚 are exchanged between 𝑣(𝑖)

and 𝑣′ and all other requests are performed during the same crane cycles (line 11).

This automatically implies that 𝑣′ ∈ {0, 1}. If the precedence constraints are verified

i.e. 𝑣′ ∈ 𝒱 , then 𝑣′ is a neighbor of 𝑣(𝑖) (line 12). We also mention that lines 13-14

are added to enhance the speed of the local search. Indeed, when solving Λ(𝑣′), we

have access to 𝜆(𝑣′) 6 𝜓(𝑣′). If 𝜆(𝑣′) > 𝜓(𝑣(𝑖)), then we know that 𝜓(𝑣′) > 𝜓(𝑣(𝑖)),

hence no need to sample for on 𝐿(𝑣′) as 𝑣′ cannot improve the current solution.

Sampling in 𝒱 ∩ {0, 1}, an Accept-and-reject approach. We now describe the

procedure Sample_𝒱(). Note that a point 𝑣 ∈ 𝒱 ∩{0, 1} corresponds to a complete

158

Algorithm 4 Heuristic based on Repeated-Random-Search Algorithm.
1: procedure

(︀
𝑣𝑅𝑅𝑆 , 𝜎𝑅𝑅𝑆

)︀
= Repeated_Random_Search (𝑅1, 𝑅2)

2: for 𝑖 = 1, . . . , 𝑅2 do
3: Compute 𝑣(𝑖) = Sample_𝒱();
4: Solve Λ(𝑣(𝑖)). Get 𝐿 (𝑣(𝑖)) from Equation (5.32) and 𝑅′

1 = min{𝑅1, |𝐿 (𝑣(𝑖)) |};
5: for 𝑟 = 1 . . . , 𝑅′

1 do Sample 𝜎𝑟 without replacement from Equation (5.33);

6: Compute 𝜓 (𝑣(𝑖)) = min
𝑟∈{1,...,𝑅′

1}
{ℎ(𝑣(𝑖), 𝜎𝑟)} and 𝜎(𝑖) = argmin

𝑟∈{1,...,𝑅′
1}
{ℎ(𝑣(𝑖), 𝜎𝑟)};

7: 𝑗 = 0;
8: while 𝑗 < 𝑁

(︀
𝑁 − 1

)︀
/2 do

9: Increment 𝑗 = 𝑗 + 1;
10: Sample without replacement (𝑛,𝑚) ∈ {1, . . . , 𝑁}2 s.t. 𝑛 < 𝑚;
11: Consider 𝑣′ such that 𝜅′𝑛 = 𝜅𝑚(𝑖), 𝜅′𝑚 = 𝜅𝑛(𝑖) and 𝜅′𝑝 = 𝜅𝑝(𝑖), ∀ 𝑝 ̸= 𝑛,𝑚;
12: if 𝑣′ ∈ 𝒱 then
13: Solve Λ(𝑣′) to get 𝜆 (𝑣′);
14: if 𝜆 (𝑣′) < 𝜓 (𝑣(𝑖)) then
15: Compute 𝐿 (𝑣′) from Equation (5.32). Let 𝑅′

1 = min{𝑅1, |𝐿 (𝑣′) |};
16: for 𝑟 = 1 . . . , 𝑅′

1 do Sample 𝜎𝑟 without repl. from Equation (5.33);

17: Get 𝜓
(︀
𝑣′
)︀
= min

𝑟∈{1,...,𝑅′
1}

{︀
ℎ(𝑣′, 𝜎𝑟)

}︀
and 𝜎′ = argmin

𝑟∈{1,...,𝑅′
1}
{ℎ(𝑣′, 𝜎𝑟)};

18: if 𝜓 (𝑣′) < 𝜓 (𝑣(𝑖)) then 𝑣(𝑖) = 𝑣′, 𝜎(𝑖) = 𝜎′ and 𝑗 = 0;

19: return
(︀
𝑣𝑅𝑅𝑆 , 𝜎𝑅𝑅𝑆

)︀
= argmin

𝑖∈{1,...,𝑅2}
{ℎ(𝑣(𝑖), 𝜎(𝑖))};

matching between requests and crane drives. Based on studies to sample efficiently

on complete matching (e.g., in [34]), we use the common Accept-and-reject approach

to sample random points in 𝒱 ∩ {0, 1}. The main difference with typical studies is

that in addition to having matching constraints, there are precedence constraints to

take into account (see Equation (5.30)). The pseudocode of Sample_𝒱() is given in

Algorithm 5.

The idea behind this sampling algorithm is simple: For each crane cycle, assign

randomly a request that can be assigned to this crane cycle given the flexibility

requirements and the precedence constraints. If, no request can be assigned to a

given crane drive, then restart the process until a complete matching satisfying all

flexibility and precedence constraints is found.

159

Algorithm 5 Sampling algorithm using Accept-and-reject.
1: procedure (𝑣) = Sample_𝒱()
2: 𝑣 = {0}𝑁

2

, 𝑈 (1) = {1, . . . , 𝑁}, 𝑘 = 0 and 𝑘𝑝 = 1;
3: while 𝑘 < 𝑁 do Increment 𝑘 = 𝑘 + 1;
4: ℛ(𝑘𝑝, 𝑘) = 𝑈 (𝑘) ∩ ({𝑛 ∈ 𝒩𝑠 ∪𝒩𝑟 | 𝑛− 𝛿−𝑛 6 𝑘𝑝 6 𝑛+ 𝛿+𝑛 } ∪ 𝒩𝑢);
5: while |ℛ(𝑘𝑝, 𝑘)| > 0 do sample 𝑛 uniformly in ℛ(𝑘𝑝, 𝑘). Take 𝑣′ = 𝑣 and 𝑣′𝑛𝑘 = 1

6: if 𝑣′ satisfies precedence constraints in Equation (5.30) ∀ 𝑘′ ∈ {1, . . . , 𝑘} then
7: 𝑣 = 𝑣′, 𝑈 (𝑘 + 1) = 𝑈 (𝑘) ∖ {𝑛} and break;

8: ℛ(𝑘𝑝, 𝑘) = ℛ(𝑘𝑝, 𝑘) ∖ {𝑛};
9: if |ℛ(𝑘𝑝, 𝑘)| = 0 then 𝑣 = {0}𝑁

2

, 𝑈(1) = {1, . . . , 𝑁}, 𝑘 = 0 and 𝑘𝑝 = 1;
10: else if 𝑛 ∈ 𝒩𝑠 ∪𝒩𝑟 then Increment 𝑘𝑝 = 𝑘𝑝 + 1;

11: return 𝑣;

5.5 Computational Experiments

In this section, we first compare the efficiency of the different methods developed in the

previous sections through randomly generated instances. Afterwards, we use real data

from a real terminal to show the potential gain of using our heuristic method compared

to the actual practice. The study is performed on one processor (2.6 GHz Intel E5-

2690 v4) of a Dell C6300 with 4 gigabytes of RAM. The programming language is

Julia 0.5.0 and all optimization problems are solved using Gurobi 7.0.1.

Important Note. In all the following experiments, all algorithms integrate the

practical constraint referred to as “restricted” in the CRP literature (see assumption

𝐴1 in [10]). This constraint requires each retrieval request 𝑛 to be directly preceded

by the relocation requests needed to retrieve container 𝑛. Mathematically, it can be

formulated as:

∀ 𝑛 ∈ {𝑛′ ∈ 𝒩𝑟 ∪𝒩𝑢 | 𝑏𝑛′ ∈ 𝒩𝑢} ,∀ 𝑘 ∈
{︀
2, . . . , 𝑁

}︀
, 𝑣𝑛𝑘 = 𝑣𝑏𝑛,𝑘−1.

We show that even under this practical constraint, our algorithms have a major impact

on operations. Future work could include more experiments without this additional

constraint.

160

5.5.1 Randomly Generated Instances

Using 30 randomly generated instances as explained below, we first assess the per-

formance of the IP based algorithm and our heuristic (as a function of 𝛾) compared

to a baseline. Subsequently, we evaluate the impact of the parameters 𝛿 and 𝑁 on

the performance of the heuristic. In all experiments, the performance indicator is the

average travel cost of the crane per productive request (i.e., the total cost to perform

all requests divided by the total number of productive requests).

Simulation parameters

Each instance is defined by an initial block configuration, a sequence of productive

requests and a sequence of number of requests known in advance (i.e., a sequence of

𝑁s used in each optimization problem). Note the sequence of 𝑁s must sum up to the

total number of requests.

To generate an initial block configuration, we consider that the block has dimen-

sions 𝑋 = 7 rows, 𝑌 = 30 bays and 𝑍 = 4 tiers, giving a total of 𝑋𝑌 = 210 stacks.

The I-O point configuration is the right-sided Asian configuration. Moreover, we as-

sume that the initial number of containers is equal to ⌊0.67 (𝑋𝑌 𝑍 − 𝑌 (𝑍 − 1))⌋ =
502 where 0.67 is called the fill rate. Finally, the position of each container is drawn

uniformly at random.

Each sequence of requests consists of 1500 productive requests that we generate

randomly one at a time. A new productive request is equally likely to be a storage

request or a retrieval request, given the fact that the number of containers denoted

by 𝐶 must satisfy 𝑋𝑌 6 𝐶 6 𝑋𝑌 𝑍 − 𝑌 (𝑍 − 1) at all times. If the new request is

a retrieval request, we assume that the container to be retrieved is picked at random

among the ones that have spent at least a certain number of requests in the block.

We set this number of requests to 210 (i.e., a container can be retrieved only if there

are at least 210 productive requests between its arrival and its departure from the

block). In addition, we assume that each container initially present in the block can

be retrieved as soon as the first retrieval request.

161

Concerning the sequence of number of requests known in advance, we consider,

unless specified otherwise, that 𝑁 remains constant and is taken to be 𝑁 = 5. To

solve each optimization problem, the actual arrival order of trucks is required as an

input. Because the time at which this arrival order is known is clearly limited, it is

not really realistic to consider a much larger 𝑁 (see the data processing in the next

section).

In these experiments, we consider a block for import containers, i.e., storage re-

quests are carried out by internal trucks and retrieval requests by external trucks. A

flexibility policy of interest for port operators is (0, 𝛿) for internal trucks and (𝛿, 0)

for external trucks, where 0 6 𝛿 6 𝑁 . In practice, this corresponds to enforcing

external customers to be served at least before their position and internal trucks not

too much after their position in order not to delay ships significantly. Unless specified

otherwise, we consider

𝛿 =

⌊︂
𝑁

2

⌋︂
= 2,

i.e., retrieval requests have a flexibility of (2, 0) while storage requests have a flexibility

of (0, 2).

Each algorithm is given the realistic time limit of 60 seconds to solve one optimiza-

tion problem. Other parameters of the problems (crane speeds,...) are provided in

Appendix C.1. Results for the heuristic method are reported for (𝑅1, 𝑅2) = (40, 40).

Performance of different algorithms

We compare the following algorithms:

∙ Baseline, the binary integer program introduced in section 5.3 with 𝛾 = 0 and

𝛿 = 0, which corresponds to the greedy optimization of the routing of the crane

without considering future relocations, under the FCFS constraint for the order

of requests.

∙ Heuristic, as described in the previous section for different values of 𝛾 and

𝛿 = 2.

162

γ

0 25 50 75100 200 500 1000

Baseline
Heuristic
IP

Algorithms

140

150

160

170

180

C
ra
n
e

tr
a
v
e
l
tim

e

p
e
r
p
ro
d
u
c
tiv
e

re
q
u
e
s
t

Performance of algorithms

Figure 5-4: Performance of algorithms as function of 𝛾: Each point represents the
mean indicator obtained by different algorithms over the 30 randomly generated in-
stances and the error bars represent ±1.645 standard deviations. The red horizontal
line corresponds to the mean of the baseline and the blue vertical line correspond to
the lower bound on 𝛾 in Condition (A).

∙ IP, the binary integer program introduced in section 5.3 for different values of

𝛾 and 𝛿 = 2.

We tested 𝛾 ∈ {0, 25, 50, 75, 100, 200, 500, 1000}. We can draw several insights from

Figure 5-4:

1. There appears to be an optimal 𝛾 and 𝛾 = 50 is the best observed value for both

the heuristic and the IP in the setting of our experiments. Intuitively, increasing

the weight on the cost-to-go improves significantly the solution (up to 13% of

improvement). However, by putting too much weight on the cost-to-go, both

the heuristic and the IP worsen as they neglect the immediate cost. From this

point forward, we consider the heuristic with 𝛾 = 50. As a side note,

the best 𝛾 (50) in this particular setting does not verify condition (A).

2. The heuristic is performing better on average than the IP given the practical

time limit of 60 seconds to solve every optimization problem (even though this

difference is not statistically significant). This demonstrates the value of using

the heuristic over the IP even when 𝑁 = 5. Table 5.2 reports the percentage

163

of optimization problems that are not proven to be solved optimally by the

IP, averaged over all 30 instances. There is a significant number of such cases,

explaining the difference between the IP and the heuristic.

𝛾 0 25 50 75 100 200 500 1000

% of problems not proven 35% 25% 36% 47% 43% 47% 49% 48%to be solved optimally by the IP

Table 5.2: Percentage of optimization problems not proven to be solved optimally by
the IP in the practical time limit of 60 seconds.

Impact of the parameter 𝛿

δ

0 1 2 3 4 5

140

150

160

170

180

C
ra
n
e

tr
a
v
e
l
tim

e

p
e
r
p
ro
d
u
c
tiv
e

re
q
u
e
s
t

Impact of fexibility level

Figure 5-5: Impact of 𝛿: Each point represents the mean indicator obtained by the
heuristic with 𝛾 = 50 over all 30 instances and the error bars represent ±1.645
standard deviations.

We now study the impact on the heuristic solution of different levels of flexibility

by varying 𝛿 and keeping 𝑁 = 5. Based on the results presented in Figure 5-5, the

following insights can be obtained:

164

1. Increasing flexibility in the order of requests has a positive impact on the average

crane travel time (about 1%) but this benefit is not statistically significant and

is relatively small compared to the benefit of a well tuned 𝛾 (see Figure 5-4).

As the flexibility level solely depends on the port operator’s policy, this latter

can be set to balance the crane’s efficiency (quantified in Figure 5-5) and truck

driver’s tolerance to this flexibility.

2. Most of this benefit is captured by setting a flexibility of 𝛿 = 2 or 3. This

relates to the general intuition that in scheduling problems, most of the benefits

of flexibility is captured when 𝛿 is around half of 𝑁 . Increasing 𝛿 might help in

some cases but on average a flexibility of 𝑁/2 is close to achieve the benefits of

a fully flexible system.

Impact of the parameter 𝑁

N

2 4 5 6 10

140

150

160

170

180

C
ra
n
e

tr
a
v
e
l
tim

e

p
e
r
p
ro
d
u
c
tiv
e

re
q
u
e
s
t

Impact of N with fxed fexibility

Figure 5-6: Impact of 𝑁 : Each point represents the mean indicator obtained by
the heuristic with 𝛾 = 50 over all 30 instances and the error bars represent ±1.645
standard deviations.

In some port terminals, the mean arrival rate of productive requests might be

165

different which would lead to a different 𝑁 . Recall that, due to practical constraints

(the full arrival order of trucks must be known), thus 𝑁 cannot be arbitrarily large.

Consequently, this experiment considers 𝑁 ∈ {2, 4, 5, 6, 10} while keeping a flexibility

of 𝛿 = 2. Figure 5-6 quantifies the benefit of having a larger 𝑁 (around 1-2%).

Indeed, having more information increases the impact that the heuristic can have

on efficiency. But, this positive impact appears again relatively small when put in

perspective with Figure 5-4. We also performed the experiment where 𝛿 = ⌊𝑁/2⌋
(varies with 𝑁). We observe very similar results with 𝑁 having a slightly bigger

impact (on the order of 2-3%). Most importantly, note that 𝛾 is kept constant, so a

bigger impact of 𝑁 might be observed by varying 𝛾 for each 𝑁 .

5.5.2 Data from a Real Terminal

Data processing

We collected data from two import blocks of a real port for 17 days in September 2017.

The data included the position of each container in these two blocks on 09/07/2017

at 05:35:04 AM local time. For the next 17 days, each move of the cranes operating

in these blocks was recorded. We summarize the main figures of this dataset in Table

5.3. From this data, we can extract the initial block configuration as well as the

sequence of productive requests. Recall that the third piece of data needed for our

Parameter 𝑋 𝑌 𝑍 𝐶 IO-Points # of productive # of unproductive
moves (requests) moves (relocations)

Block 1 7 19 5 297 right-sided Asian 1502 729
Block 2 7 20 5 185 right-sided Asian 679 201

Table 5.3: Data summary for requests in two blocks for 17 days in 9/2017.

simulation is the sequence of 𝑁s. To infer this from our data, we make the reasonable

assumption that each request is available a fixed amount of time before the request was

actually performed. The operator suggested we fix this amount of time to 30 minutes.

Because we have access to every time-stamp for all requests, we can construct the

sequence of 𝑁s. More precisely, for each new request (i.e., not yet considered in an

166

N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.00

0.05

0.10

0.15

0.20

0.25

D
e
n
s
ity

Distribution of number of requests within 30 minutes of a new request.
 Mean: 3.88 std: 3.03

5-7a Block 1.

N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.0

0.1

0.2

0.3

0.4

0.5

D
e
n
s
ity

Distribution of number of requests within 30 minutes of a new request.
 Mean: 2.81 std: 3.45

5-7b Block 2.

Figure 5-7: Distribution of 𝑁 of requests from two blocks for 17 days in September
2017.

optimization problem), a new problem is considered with 𝑁 equal to the number of

requests available in the 30 minutes following the new request. Because this is close

to what actually happens, we refer to this sequence of 𝑁s as the real scenario. Figure

167

5-7 presents the distributions of 𝑁 for the two blocks over the 17 days. From these

distributions, we also consider the ideal scenario where 𝑁 remains constant and is

taken to be the rounded mean of the aforementioned distributions (𝑁 = 4 for Block

1 and 𝑁 = 3 for Block 2). Note that to consider the same number of productive

requests, the last optimization problem may use a different 𝑁 than the mean.

Finally, we consider the same parameters as for randomly generated instances:

retrieval requests have a flexibility of (2, 0) while storage requests have a flexibility

of (0, 2); the heuristic uses (𝑅1, 𝑅2) = (40, 40) and is given 60 seconds to solve each

optimization problem; other speed parameters are given in Appendix C.1.

Results

Results are reported in Figure 5-8 for both blocks. These experiments provide three

main insights:

1. Most importantly, using a good value for 𝛾 (here, 100) leads to a significant

improvement over the current practice. In the real scenario, the improvement is

of the order of 8% in Block 1 and 16% in Block 2, therefore proving the efficacy

of our proposed method in real operations.

2. The performance of the heuristic as a function of 𝛾 in Block 1 are quite similar to

the ones from the randomly generated instances, with the noticeable difference

that the current practice is clearly outperforming the heuristic for 𝛾 = 0 (thus

our artificial baseline which was even worse). This is not surprising as current

practice should be taking future relocations into account, thus only a 𝛾 properly

set can outperform the current practice. In the case of Block 2, the impact of

𝛾 appears to be quite different. Indeed, any value of 𝛾 outperforms clearly the

current practice but larger values of 𝛾 are similar to the best value of 𝛾 (100).

Indeed, the heuristic has a very similar behavior for all 𝛾 > 75. Intuitively,

increasing 𝛾 should not change the heuristic after a certain point, because it

tends to minimize only future relocations. In this case, this point is relatively

small (75) because empty stacks are always quite close to the current position

168

γ

0

2
5

5
0

7
5

1
0
0

2
0
0

5
0
0

1
0
0
0

Current
Heuristic_Real
Heuristic_Ideal

Algorithms

160

170

180

190

200

C
ra
n
e

tr
a
v
e
l
tim

e

p
e
r
p
ro
d
u
c
tiv
e

re
q
u
e
s
t

Performance of heuristic compared with current practice on Block 1

5-8a Block 1.

γ

0

2
5

5
0

7
5

1
0
0

2
0
0

5
0
0

1
0
0
0

Current
Heuristic_Real
Heuristic_Ideal

Algorithms

130

140

150

160

170

C
ra
n
e

tr
a
v
e
l
tim

e

p
e
r
p
ro
d
u
c
tiv
e

re
q
u
e
s
t

Performance of heuristic compared with current practice on Block 2

5-8b Block 2.

Figure 5-8: Performance of heuristic algorithm as function of 𝛾 on real data: Each
point represents the average crane travel time obtained by the heuristic under the
real and ideal scenarios. The red horizontal line corresponds to the mean of the
current practice and the blue vertical line correspond to the lower bound on 𝛾 in

Condition (A).

of the crane (due to the low fill rate of the block of about 0.3). The difference

in the results for 𝛾 > 75 can mostly be explained by the randomized nature

of the heuristic. Therefore, taking future relocations into account seems to

169

have an even more significant impact by reducing dramatically the number of

relocations.

3. Finally, an interesting point is the small difference between the real and ideal

scenarios (at most on the order of 3%). This validates our analysis from the ran-

domly generated data where 𝑁 is taken to be constant and future experiments

could make this assumption for real scenarios. In addition, the ideal scenario

show a slightly larger improvement than the real scenario for most cases. This

suggests that having a steady flow of requests could potentially slightly improve

the operations as compared to having rush/empty hours.

Note that the data only represents two particular instances and the conclusions we

have drawn here might not apply in other specific cases.

5.5.3 Main Insights

These experiments (both synthetic and from real data) lead us to conclude that

the most important parameter of our model is the parameter 𝛾. Variations of this

parameter can lead to significant improvement over the baseline and current practice.

This parameter tuning appears to be all the more crucial in the case of high fill rates.

Once this parameter is fixed, allowing for some flexibility in the order of requests is

not expected to provide much if any benefit.

170

Chapter 6

Concluding Remarks

We conclude this thesis with a summary of contributions, emphasizing our technical

contributions, and a discussion of future research directions.

6.1 Summary

In Chapter 1, we discuss the growing importance of container terminals as nodes

of worldwide supply chains. We provide background information about equipment

and terminal operations. We present operations research models developed to answer

the challenges arising from the recent demand for higher productivity of maritime

terminals.

In Chapter 2, we review papers addressing the container relocation problem and

its variants, as well as the yard crane scheduling problem. We also briefly review the

literature for the stacking problem and the pre-marshalling problem.

In Chapter 3, we study the container relocation problem as it was originally in-

troduced in [38]. First, we present a new binary integer program (CRP-I) using an

enhanced binary encoding of the CRP. The major contributions of this work are the

novelty, the efficiency (in terms of variables and constraints), and the adaptability of

this mathematical formulation for the restricted CRP. These features provide a strong

basis for future research using this approach. Finally, our formulation outperforms

in terms of computation time all previous mathematical formulations and most other

171

exact methods, except the B&B approach from [66]. In addition, as shown by our

formulation and other exact approaches, the container relocation problem is known

for its computational intractability, so most research studies have designed heuristics

to solve the problem, particularly for large configurations. We show a new theoretical

result stating that the ratio between the expected minimum number of relocations

and a simple lower bound (given by Lemma 2) approaches 1. The main insight of this

result is that in large configurations each blocking container is relocated at most once

with high probability. This leads us to believe that the same theoretical result should

hold for heuristic MinMax (see [10]) and we confirm this intuition by simulation.

In Chapter 4, we extend the CRP to the more practical case in which the retrieval

order of containers is not known far in advance. First, we introduce a new stochastic

model, called the batch model, show the applicability of this model and compare it

theoretically with the existing model of Zhao and Goodchild [86]. Then, we derive

lower bounds and fast and efficient heuristics for the SCRP. Subsequently, we develop

two novel algorithms (𝑃𝐵𝐹𝑆 and 𝑃𝐵𝐹𝑆𝐴) to solve the stochastic CRP in different

settings. Efficiencies of all algorithms are demonstrated through computational ex-

periments, for which all results are made available online. Finally, using our solution

methods and based on extensive experiments, we conjecture the optimality of the

simple leveling heuristic in the online stochastic setting. More generally, the meth-

ods developed in this chapter apply to multistage stochastic optimization problems,

where the number of stages is finite, the set of feasible actions at each stage is finite,

the objective function is bounded and bounds on the objective function can be easily

computed.

Chapter 5 is the first work that integrates the container relocation problem and

the yard crane scheduling problem and makes decisions for storage, retrieval and en-

forced relocation requests in a realistic setting. Our model jointly optimizes current

crane travel time and expected future relocations. First, we formulate this problem

as a binary integer programming model. Then, we leverage theoretical properties of

this formulation to develop a heuristic based on a reduced state space decomposition

and repeated random start local search. Finally, computational experiments on both

172

data randomly generated and data from a real terminal are conducted to show the ef-

ficiency and practicality of our heuristic method compared to current practice. These

experiments highlight for practitioners the importance of balancing crane travel time

and future unproductive moves (which is shown through the importance of tuning

the parameter 𝛾).

6.2 Future Research Directions

6.2.1 Direct Extensions from the Thesis

Section 3.3. Future research could include the use of combinatorial lower bounds

in [87, 66] to increase the efficiency of our binary integer formulation for the restricted

CRP. Another direction could be the application of other typical techniques such as

branch-and-cut or branch-and-price to this formulation. Finally, an important study

could investigate the application of ideas provided in this paper to related problems

(pre-marshalling, dynamic CRP, etc.).

Section 3.4. A future average case analysis could include the formal proof of a

similar result for the heuristic MinMax or the proof of convergence of the difference

between the optimal solution and the simple lower bound.

Chapter 4. Future work could include the proof of Conjecture 1, which would

have both theoretical and practical impacts. A further study of the CRP under an

adversarial model as in [84] could also be of interest.

Chapter 5. Future research could find more efficient solutions for this new model

and ways to automatically set 𝛾 based on simple business criteria. An important

future work could consider our model with multiple crane systems in the case of

ports dealing with crane interference (see [63]). Finally, an important work could

include information from prediction models or truck appointment systems (such as

in Chapter 4).

173

6.2.2 New Challenges for Storage Yards

Finally, we mention two directions that we believe could be crucial in the next decades

for storage yard systems in maritime container terminals:

1. the optimal design of time windows for a truck appointment system (see [82]).

As many ports start to implement their own TAS, it is really important to

quantify the impact of such a system. On one hand, small time windows imply

more information on the retrieval sequence, hence higher operational efficiency

of port operators. On the other hand, large time windows insure higher flex-

ibility for truck drivers and a high rate of on-time arrivals. To balance this

trade-off, one would need to quantify two important metrics with respect to the

expected number of relocations: the “value of information” and the assignment

of containers to “wrong” batches.

2. the tactical allocation of incoming containers to blocks at the port level. In

Chapter 5, we have assumed that requests are an input to our problem. How-

ever, the block to which a container is sent to be stored is a decision for the

operator. Future research on this problem could optimize block allocation by

modeling each block using our model and use simulation or queuing models to

model the whole port terminal.

174

Bibliography

[1] Dimitri P. Bertsekas. In Dynamic Programming and Optimal Control, Third
Edition, volume 1 of Lecture Notes in Computer Science. Athena Scientific, 2005.

[2] Christian Bierwirth and Frank Meisel. A survey of berth allocation and quay
crane scheduling problems in container terminals. European Journal of Opera-
tional Research, 202(3):615–627, 2010.

[3] Joseph Bonney. US ports move toward truck appointment model. Information
Handling Services IHS, 2015. (Accessed 11.01.2017).

[4] S. Borjian, V. Galle, V. H. Manshadi, C. Barnhart, and P. Jaillet. Container
Relocation Problem: Approximation, Asymptotic, and Incomplete Information.
CoRR, abs/1505.04229, 2015. (Accessed 11.01.2017).

[5] S. Borjian, V. H. Manshadi, C. Barnhart, and P. Jaillet. Managing Reloca-
tion and Delay in Container Terminals with Flexible Service Policies. CoRR,
abs/1503.01535, 2015. (Accessed 11.01.2017).

[6] Andreas Bortfeldt and Florian Forster. A tree search procedure for the container
pre-marshalling problem. European Journal of Operational Research, 217(3):531–
540, 2012.

[7] Héctor J Carlo, Iris FA Vis, and Kees Jan Roodbergen. Storage yard operations
in container terminals: Literature overview, trends, and research directions. Eu-
ropean Journal of Operational Research, 235(2):412–430, 2014.

[8] Héctor J. Carlo, Iris F.A. Vis, and Kees Jan Roodbergen. Transport opera-
tions in container terminals: Literature overview, trends, research directions and
classification scheme. European Journal of Operational Research, 236(1):1–13,
2014.

[9] Marco Caserta, Silvia Schwarze, and Stefan Voß. A New Binary Description
of the Blocks Relocation Problem and Benefits in a Look Ahead Heuristic. In
Evolutionary Computation in Combinatorial Optimization: 9th European Con-
ference, EvoCOP 2009, Tübingen, Germany, April 15-17, 2009. Proceedings,
pages 37–48. Springer Berlin Heidelberg, 2009.

175

https://doi.org/10.1016/j.ejor.2009.05.031
https://doi.org/10.1016/j.ejor.2009.05.031
http://www.joc.com/port-news/us-ports/port-new-york-and-new-jersey/us-ports-move-toward-truck-appointment-model_20150427.html
http://arxiv.org/abs/1505.04229
http://arxiv.org/abs/1505.04229
https://arxiv.org/pdf/1503.01535
https://arxiv.org/pdf/1503.01535
https://doi.org/10.1016/j.ejor.2011.10.005
https://doi.org/10.1016/j.ejor.2011.10.005
https://doi.org/10.1016/j.ejor.2013.10.054
https://doi.org/10.1016/j.ejor.2013.10.054
https://doi.org/10.1016/j.ejor.2013.11.023
https://doi.org/10.1016/j.ejor.2013.11.023
https://doi.org/10.1016/j.ejor.2013.11.023
https://doi.org/10.1007/978-3-642-01009-5_4
https://doi.org/10.1007/978-3-642-01009-5_4

[10] Marco Caserta, Silvia Schwarze, and Stefan Voß. A mathematical formulation
and complexity considerations for the blocks relocation problem. European Jour-
nal of Operational Research, 219(1):96–104, 2012.

[11] Marco Caserta and Stefan Voß. A Corridor Method-Based Algorithm for the
Pre-marshalling Problem. In Applications of Evolutionary Computing: EvoWork-
shops 2009, volume 219, pages 788–797. 2009.

[12] B. Casey and E. Kozan. Optimising container storage processes at multimodal
terminals. Journal of the Operational Research Society, 63(8):1126–1142, 2012.

[13] Jiang Hang Chen, Der-Horng Lee, and Jin Xin Cao. A combinatorial benders’
cuts algorithm for the quayside operation problem at container terminals. Trans-
portation Research Part E: Logistics and Transportation Review, 48(1):266–275,
2012.

[14] Philip Davies. Container terminal reservation systems. In 3rd Annual METRANS
National Urban Freight Conference, Long Beach CA, 2009.

[15] Marcos de Melo da Silva, Güneş Erdoğan, Maria Battarra, and Vitaly Struse-
vich. The Block Retrieval Problem. European Journal of Operational Research,
265(3):931–950, 2018.

[16] Alberto Delgado, Rune Møller Jensen, Kira Janstrup, Trine Høyer Rose, and
Kent Høj Andersen. A Constraint Programming model for fast optimal stowage
of container vessel bays. European Journal of Operational Research, 220(1):251–
261, 2012.

[17] Robert F. Dell, Johannes O. Royset, and Ioannis Zyngiridis. Optimizing con-
tainer movements using one and two automated stacking cranes. Journal of
Industrial and Management Optimization, 5(2):285–302, 2009.

[18] H Eskandari and E Azari. Notes on mathematical formulation and complexity
considerations for blocks relocation problem. Scientia Iranica. Transaction E,
Industrial Engineering, 22(6):2722–2728, 2015.

[19] C. Expósito-Izquierdo, B. Melián-Batista, and J. M. Moreno-Vega. Pre-
Marshalling Problem: Heuristic solution method and instances generator. Expert
Systems with Applications, 39(9):8337–8349, 2012.

[20] C. Expósito-Izquierdo, B. Melián-Batista, and J. M. Moreno-Vega. An exact
approach for the Blocks Relocation Problem. Expert Systems with Applications,
42(17):6408–6422, 2015.

[21] F. Forster and A. Bortfeldt. A tree search procedure for the container relocation
problem. Computers & Operations Research, 39(2):299–309, 2012.

176

https://doi.org/10.1016/j.ejor.2011.12.039
https://doi.org/10.1016/j.ejor.2011.12.039
https://doi.org/10.1007/978-3-642-01129-0_89
https://doi.org/10.1007/978-3-642-01129-0_89
https://doi.org/10.1057/jors.2011.113
https://doi.org/10.1057/jors.2011.113
https://doi.org/10.1016/j.tre.2011.06.004
https://doi.org/10.1016/j.tre.2011.06.004
http://dtci.ca/wp-content/uploads/2011/10/Container-Reservation-Systems-Web.pdf
https://doi.org/10.1016/j.ejor.2017.08.048
https://doi.org/10.1016/j.ejor.2012.01.028
https://doi.org/10.1016/j.ejor.2012.01.028
https://doi.org/10.3934/jimo.2009.5.285
https://doi.org/10.3934/jimo.2009.5.285
http://www.sid.ir/en/VEWSSID/J_pdf/955201506E10.pdf
http://www.sid.ir/en/VEWSSID/J_pdf/955201506E10.pdf
https://doi.org/10.1016/j.eswa.2012.01.187
https://doi.org/10.1016/j.eswa.2012.01.187
https://doi.org/10.1016/j.eswa.2015.04.021
https://doi.org/10.1016/j.eswa.2015.04.021
https://doi.org/10.1016/j.cor.2011.04.004
https://doi.org/10.1016/j.cor.2011.04.004

[22] V. Galle, C. Barnhart, and P. Jaillet. A New Binary Formulation of the Re-
stricted Container Relocation Problem Based on a Binary Encoding of Congura-
tions. accepted for publication in European Journal of Operational Research on
11.27.2017, 2017.

[23] V. Galle, C. Barnhart, and P. Jaillet. Yard crane scheduling for container storage,
retrieval, and relocation. working paper, 2017.

[24] V. Galle, S. Borjian, V.H. Manshadi, C. Barnhart, and P. Jaillet. The Stochas-
tic Container Relocation Problem. submitted manuscript, 2017. (Accessed
11.01.2017).

[25] V. Galle, S. Borjian Boroujeni, V.H. Manshadi, C. Barnhart, and P. Jaillet.
An Average-Case Asymptotic Analysis of the Container Relocation Problem.
Operations Research Letters, 44(6):723–728, 2016.

[26] Amir Hossein Gharehgozli, Gilbert Laporte, Yugang Yu, and René de Koster.
Scheduling Twin Yard Cranes in a Container Block. Transportation Science,
49(3):686–705, 2015.

[27] Amir Hossein Gharehgozli, Debjit Roy, and René de Koster. Sea container ter-
minals: New technologies and OR models. Maritime Economics & Logistics,
18(2):103–140, 2016.

[28] Amir Hossein Gharehgozli, Yugang Yu, René de Koster, and Jan Tijmen Udding.
An exact method for scheduling a yard crane. European Journal of Operational
Research, 235(2):431–447, 2014.

[29] Amir Hossein Gharehgozli, Yugang Yu, Xiandong Zhang, and René de Koster.
Polynomial Time Algorithms to Minimize Total Travel Time in a Two-Depot Au-
tomated Storage/Retrieval System. Transportation Science, 51(1):19–33, 2017.

[30] Giovanni Giallombardo, Luigi Moccia, Matteo Salani, and Ilaria Vacca. Modeling
and solving the Tactical Berth Allocation Problem. Transportation Research Part
B: Methodological, 44(2):232–245, 2010.

[31] Genevieve Giuliano and Thomas O’Brien. Reducing port-related truck emissions:
The terminal gate appointment system at the Ports of Los Angeles and Long
Beach. Transportation Research Part D: Transport and Environment, 12(7):460–
473, 2007.

[32] Xi Guo, Shell Ying Huang, Wen Jing Hsu, and Malcolm Yoke Hean Low. Dy-
namic yard crane dispatching in container terminals with predicted vehicle arrival
information. Advanced Engineering Informatics, 25(3):472–484, 2011.

[33] M. Hakan Akyüz and Chung-Yee Lee. A mathematical formulation and efficient
heuristics for the dynamic container relocation problem. Naval Research Logistics
(NRL), 61(2):101–118, 2014.

177

https://dspace.mit.edu/handle/1721.1/109978
https://dspace.mit.edu/handle/1721.1/109978
https://dspace.mit.edu/handle/1721.1/109978
https://dspace.mit.edu/handle/1721.1/107762
https://dspace.mit.edu/handle/1721.1/107762
http://dx.doi.org/10.1016/j.orl.2016.08.006
https://doi.org/10.1287/trsc.2014.0533
https://doi.org/10.1057/mel.2015.3
https://doi.org/10.1057/mel.2015.3
http://dx.doi.org/10.1016/j.ejor.2013.09.038
https://doi.org/10.1287/trsc.2014.0562
https://doi.org/10.1287/trsc.2014.0562
https://doi.org/10.1016/j.trb.2009.07.003
https://doi.org/10.1016/j.trb.2009.07.003
https://doi.org/10.1016/j.trd.2007.06.004
https://doi.org/10.1016/j.trd.2007.06.004
https://doi.org/10.1016/j.trd.2007.06.004
http://dx.doi.org/10.1016/j.aei.2011.02.002
http://dx.doi.org/10.1016/j.aei.2011.02.002
http://dx.doi.org/10.1016/j.aei.2011.02.002
http://dx.doi.org/10.1002/nav.21569
http://dx.doi.org/10.1002/nav.21569

[34] Mark Huber. Exact Sampling from Perfect Matchings of Dense Regular Bipartite
Graphs. Algorithmica, 44(3):183–193, 2006.

[35] Bo Jin, Wenbin Zhu, and Andrew Lim. Solving the container relocation problem
by an improved greedy look-ahead heuristic. European Journal of Operational
Research, 240(3):837 – 847, 2015.

[36] Michael Jünger, Thomas M Liebling, Denis Naddef, George L Nemhauser,
William R Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A
Wolsey. 50 years of integer programming 1958-2008: From the early years to the
state-of-the-art. Springer Science & Business Media, 2009.

[37] Nils Kemme. Container-Terminal Logistics. In Design and Operation of Auto-
mated Container Storage Systems, pages 9–52. Physica-Verlag HD, 2013.

[38] Kap Hwan Kim and Gyu-Pyo Hong. A heuristic rule for relocating blocks.
Computers & Operations Research, 33(4):940–954, 2006.

[39] Kap Hwan Kim and Ki Young Kim. An optimal routing algorithm for a transfer
crane in port container terminals. Transportation Science, 33(1):17–33, 1999.

[40] Kap Hwan Kim, Young Man Park, and Kwang-Ryul Ryu. Deriving decision rules
to locate export containers in container yards. European Journal of Operational
Research, 124(1):89–101, 2000.

[41] Ki Young Kim and Kap Hwan Kim. Heuristic algorithms for routing yard-side
equipment for minimizing loading times in container terminals. Naval Research
Logistics (NRL), 50(5):498–514, 2003.

[42] Dusan Ku and Tiru S. Arthanari. On the abstraction method for the container
relocation problem. Computers & Operations Research, 68(Supplement C):110–
122, 2016.

[43] Dusan Ku and Tiru S. Arthanari. Container relocation problem with time
windows for container departure. European Journal of Operational Research,
252(3):1031–1039, 2016.

[44] Der-Horng Lee, Zhi Cao, and Qiang Meng. Scheduling of two-transtainer systems
for loading outbound containers in port container terminals with simulated an-
nealing algorithm. International Journal of Production Economics, 107(1):115–
124, 2007.

[45] Yusin Lee and Shih-Liang Chao. A neighborhood search heuristic for pre-
marshalling export containers. European Journal of Operational Research,
196(2):468–475, 2009.

[46] Yusin Lee and Nai-Yun Hsu. An optimization model for the container pre-
marshalling problem. Computers & Operations Research, 34(11):3295–3313,
2007.

178

https://doi.org/10.1007/s00453-005-1175-9
https://doi.org/10.1007/s00453-005-1175-9
https://doi.org/10.1016/j.ejor.2014.07.038
https://doi.org/10.1016/j.ejor.2014.07.038
https://doi.org/10.1007/978-3-7908-2885-6_2
http://dx.doi.org/10.1016/j.cor.2004.08.005
https://doi.org/10.1287/trsc.33.1.17
https://doi.org/10.1287/trsc.33.1.17
https://doi.org/10.1016/S0377-2217(99)00116-2
https://doi.org/10.1016/S0377-2217(99)00116-2
http://dx.doi.org/10.1002/nav.10076
http://dx.doi.org/10.1002/nav.10076
https://doi.org/10.1016/j.cor.2015.11.006
https://doi.org/10.1016/j.cor.2015.11.006
https://doi.org/10.1016/j.ejor.2016.01.055
https://doi.org/10.1016/j.ejor.2016.01.055
http://dx.doi.org/10.1016/j.ijpe.2006.08.003
http://dx.doi.org/10.1016/j.ijpe.2006.08.003
http://dx.doi.org/10.1016/j.ijpe.2006.08.003
https://doi.org/10.1016/j.ejor.2008.03.011
https://doi.org/10.1016/j.ejor.2008.03.011
https://doi.org/10.1016/j.cor.2005.12.006
https://doi.org/10.1016/j.cor.2005.12.006

[47] Yusin Lee and Yen-Ju Lee. A heuristic for retrieving containers from a yard.
Computers & Operations Research, 37(6):1139–1147, 2010.

[48] Pasquale Legato, Roberto Trunfio, and Frank Meisel. Modeling and Solving
Rich Quay Crane Scheduling Problems. Computers & Operations Research,
39(9):2063–2078, 2012.

[49] Jana Lehnfeld and Sigrid Knust. Loading, unloading and premarshalling of stacks
in storage areas: Survey and classification. European Journal of Operational
Research, 239(2):297–312, 2014.

[50] Israel López-Plata, Expósito-Izquierdo Christopher, Eduardo Lalla-Ruiz, Belén
Melián-Batista, and J. Marcos Moreno-Vega. Minimizing the Waiting Times of
block retrieval operations in stacking facilities. Computers & Industrial Engi-
neering, 103(2):70–84, 2017.

[51] J. Matoušek and J. Vondrák. The Probabilistic Method: Lecture Notes. 2008.
(Accessed 29.08.16).

[52] Philippe Morais and Elisabeth Lord. Terminal Appointment System Study. Tech-
nical Report, Transportation Development Center of Transport Canada, 2006.
(Accessed 11.01.2017).

[53] Katta G Murty, Yat-wah Wan, Jiyin Liu, Mitchell M Tseng, Edmond Leung,
Kam-Keung Lai, and Herman WC Chiu. Hongkong International Terminals
gains elastic capacity using a data-intensive decision-support system. Interfaces,
35(1):61–75, 2005.

[54] Ananthapadmanabhan Narasimhan and Udatta S Palekar. Analysis and algo-
rithms for the transtainer routing problem in container port operations. Trans-
portation Science, 36(1):63–78, 2002.

[55] WC Ng and KL Mak. Yard crane scheduling in port container terminals. Applied
mathematical modelling, 29(3):263–276, 2005.

[56] Martin Olsen and Allan Gross. Average Case Analysis of Blocks Relocation
Heuristics. In Computational Logistics: 5th International Conference, ICCL
2014, Valparaiso, Chile, September 24-26, 2014. Proceedings, pages 81–92. 2014.

[57] Taejin Park, Ri Choe, Seung Min Ok, and Kwang Ryel Ryu. Real-time scheduling
for twin RMGs in an automated container yard. OR Spectrum, 32(3):593–615,
2010.

[58] Matthew E.H. Petering and Mazen I. Hussein. A new mixed integer program
and extended look-ahead heuristic algorithm for the block relocation problem.
European Journal of Operational Research, 231(1):120–130, 2013.

[59] E. E. Phillips. Southern California Ports to try Trucking Appointment System.
The Wall Street Journal, 32(3):593–615, 2015. (Accessed 11.01.2017).

179

https://doi.org/10.1016/j.cor.2009.10.005
http://dx.doi.org/10.1016/j.cor.2011.09.025
http://dx.doi.org/10.1016/j.cor.2011.09.025
https://doi.org/10.1016/j.ejor.2014.03.011
https://doi.org/10.1016/j.ejor.2014.03.011
https://doi.org/10.1016/j.cie.2016.11.015
https://doi.org/10.1016/j.cie.2016.11.015
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f09/www/handouts/matousek-vondrak-prob-ln.pdf
https://www.tc.gc.ca/media/documents/policy/14570e.pdf
http://dx.doi/abs/10.1287/inte.1040.0120
http://dx.doi/abs/10.1287/inte.1040.0120
https://doi.org/10.1287/trsc.36.1.63.576
https://doi.org/10.1287/trsc.36.1.63.576
http://dx.doi.org/10.1016/j.apm.2004.09.009
http://dx.doi.org/10.1007/978-3-319-11421-7_6
http://dx.doi.org/10.1007/978-3-319-11421-7_6
https://doi.org/10.1007/s00291-010-0209-0
https://doi.org/10.1007/s00291-010-0209-0
https://doi.org/10.1016/j.ejor.2013.05.037
https://doi.org/10.1016/j.ejor.2013.05.037
http://www.wsj.com/articles/southern-california-ports-to-try-trucking-appointment-system-1440711102

[60] Rui Rei and João Pedro Pedroso. Tree search for the stacking problem. Annals
of Operations Research, 203(1):371–388, 2013.

[61] S. Saurí and E. Martín. Space allocating strategies for improving import yard
performance at marine terminals. Transportation Research Part E: Logistics and
Transportation Review, 47(6):1038–1057, 2011.

[62] Linn I Sennott. Stochastic dynamic programming and the control of queueing
systems, volume 504. John Wiley & Sons, 2009.

[63] Ulf Speer and Kathrin Fischer. Scheduling of Different Automated Yard Crane
Systems at Container Terminals. Transportation Science, 51(1):305–324, 2017.

[64] Robert Stahlbock and Stefan Voß. Operations research at container terminals:
a literature update. OR Spectrum, 30(1):1–52, 2008.

[65] Dirk Steenken, Stefan Voß, and Robert Stahlbock. Container terminal operation
and operations research - a classification and literature review. OR Spectrum,
26(1):3–49, 2004.

[66] S Tanaka and K Takii. A Faster Branch-and-Bound Algorithm for the Block Re-
location Problem. IEEE Transactions on Automation Science and Engineering,
13(1):181–190, 2016.

[67] Lixin Tang, Wei Jiang, Jiyin Liu, and Yun Dong. Research into container
reshuffling and stacking problems in container terminal yards. IIE Transactions,
47(7):751–766, 2015.

[68] Lixin Tang, Ren Zhao, and Jiyin Liu. Models and algorithms for shuffling prob-
lems in steel plants. Naval Research Logistics (NRL), 59(7):502–524, 2012.

[69] Kevin Tierney and Stefan Voß. Solving the Robust Container Pre-Marshalling
Problem. In Computational Logistics: 7th International Conference, ICCL 2016,
Lisbon, Portugal, September 7-9, 2016, Proceedings, pages 131–145. 2016.

[70] Fabien Tricoire, Judith Scagnetti, and Andreas Beham. New insights on the
block relocation problem. Computers & Operations Research, 89(Supplement
C):127–139, 2018.

[71] Tonguç Ünlüyurt and Cenk Aydın. Improved rehandling strategies for the con-
tainer retrieval process. Journal of Advanced Transportation, 46(4):378–393,
2012.

[72] Eelco van Asperen, Bram Borgman, and Rommert Dekker. Evaluating impact
of truck announcements on container stacking efficiency. Flexible Services and
Manufacturing Journal, 25(4):543–556, 2013.

[73] Iris FA Vis and Kees Jan Roodbergen. Scheduling of container storage and
retrieval. Operations Research, 57(2):456–467, 2009.

180

https://doi.org/10.1007/s10479-012-1186-2
https://doi.org/10.1016/j.tre.2011.04.005
https://doi.org/10.1016/j.tre.2011.04.005
https://doi.org/10.1287/trsc.2016.0687
https://doi.org/10.1287/trsc.2016.0687
https://doi.org/10.1007/s00291-007-0100-9
https://doi.org/10.1007/s00291-007-0100-9
https://doi.org/10.1007/s00291-003-0157-z
https://doi.org/10.1007/s00291-003-0157-z
https://doi.org/10.1109/TASE.2015.2434417
https://doi.org/10.1109/TASE.2015.2434417
http://doi.org/10.1080/0740817X.2014.971201
http://doi.org/10.1080/0740817X.2014.971201
https://doi.org/10.1002/nav.21503
https://doi.org/10.1002/nav.21503
https://doi.org/10.1007/978-3-319-44896-1_9
https://doi.org/10.1007/978-3-319-44896-1_9
https://doi.org/10.1016/j.cor.2017.08.010
https://doi.org/10.1016/j.cor.2017.08.010
http://doi.org/10.1002/atr.1193
http://doi.org/10.1002/atr.1193
https://doi.org/10.1007/s10696-011-9108-1
https://doi.org/10.1007/s10696-011-9108-1
https://doi.org/10.1287/opre.1080.0621
https://doi.org/10.1287/opre.1080.0621

[74] Yat-wah Wan, Jiyin Liu, and Pei-Chun Tsai. The assignment of storage locations
to containers for a container stack. Naval Research Logistics (NRL), 56(8):699–
713, 2009.

[75] Jörg Wiese, Leena Suhl, and Natalia Kliewer. Mathematical models and solution
methods for optimal container terminal yard layouts. OR Spectrum, 32(3):427–
452, 2010.

[76] K.-C. Wu and C.-J. Ting. A beam search algorithm for minimizing reshuffle
operations at container yards. In Proceedings of the International Conference on
Logistics and Maritime Systems, pages 703–710, 2010.

[77] K.-C. Wu and C.-J. Ting. Heuristic approaches for minimizing reshuffle opera-
tions at container yard. In Proceedings of the Asia Pacific industrial engineering
& management systems conference, pages 1407–1451, 2012.

[78] Dongsheng Xu, Chung-Lun Li, and Joseph Y.-T. Leung. Berth allocation with
time-dependent physical limitations on vessels. European Journal of Operational
Research, 216(1):47–56, 2012.

[79] Mingzhu Yu and Xiangtong Qi. Storage space allocation models for inbound
containers in an automatic container terminal. European Journal of Operational
Research, 226(1):32–45, 2013.

[80] Yuan Yuan and Lixin Tang. Novel time-space network flow formulation and
approximate dynamic programming approach for the crane scheduling in a coil
warehouse. European Journal of Operational Research, 262(2):424–437, 2017.

[81] Elisabeth Zehendner, Marco Casserta, Dominique Feillet, Silvia Schwarze, and
Stefan Voß. An improved mathematical formulation for the blocks relocation
problem. European Journal of Operational Research, 245(2):415–422, 2015.

[82] Elisabeth Zehendner and Dominique Feillet. Benefits of a truck appointment
system on the service quality of inland transport modes at a multimodal container
terminal. European Journal of Operational Research, 235(2):461–469, 2014.

[83] Elisabeth Zehendner and Dominique Feillet. A branch and price approach for
the container relocation problem. International Journal of Production Research,
52(24):7159–7176, 2014.

[84] Elisabeth Zehendner, Dominique Feillet, and Patrick Jaillet. An algorithm with
performance guarantee for the Online Container Relocation Problem. European
Journal of Operational Research, 259(1):48–62, 2017.

[85] Canrong Zhang, Weiwei Chen, Leyuan Shi, and Li Zheng. A note on deriving
decision rules to locate export containers in container yards. European Journal
of Operational Research, 205(2):483–485, 2010.

181

http://dx.doi.org/10.1002/nav.20373
http://dx.doi.org/10.1002/nav.20373
https://doi.org/10.1007/s00291-010-0203-6
https://doi.org/10.1007/s00291-010-0203-6
https://www.researchgate.net/publication/267383693_A_beam_search_algorithm_for_minimizing_reshuffle_operations_at_container_yards
https://www.researchgate.net/publication/267383693_A_beam_search_algorithm_for_minimizing_reshuffle_operations_at_container_yards
https://doi.org/10.1016/j.ejor.2011.07.012
https://doi.org/10.1016/j.ejor.2011.07.012
https://doi.org/10.1016/j.ejor.2012.10.045
https://doi.org/10.1016/j.ejor.2012.10.045
http://dx.doi.org/10.1016/j.ejor.2017.03.007
http://dx.doi.org/10.1016/j.ejor.2017.03.007
http://dx.doi.org/10.1016/j.ejor.2017.03.007
https://doi.org/10.1016/j.ejor.2015.03.032
https://doi.org/10.1016/j.ejor.2015.03.032
https://doi.org/10.1016/j.ejor.2013.07.005
https://doi.org/10.1016/j.ejor.2013.07.005
https://doi.org/10.1016/j.ejor.2013.07.005
https://doi.org/10.1080/00207543.2014.965358
https://doi.org/10.1080/00207543.2014.965358
https://doi.org/10.1016/j.ejor.2016.09.011
https://doi.org/10.1016/j.ejor.2016.09.011
https://doi.org/10.1016/j.ejor.2009.12.016
https://doi.org/10.1016/j.ejor.2009.12.016

[86] Wenjuan Zhao and Anne V. Goodchild. The impact of truck arrival information
on container terminal rehandling. Transportation Research Part E: Logistics and
Transportation Review, 46(3):327–343, 2010.

[87] Wenbin Zhu, Hu Qin, A. Lim, and Huidong Zhang. Iterative Deepening A* Algo-
rithms for the Container Relocation Problem. IEEE Transactions on Automation
Science and Engineering, 9(4):710–722, 2012.

182

https://doi.org/10.1016/j.tre.2009.11.007
https://doi.org/10.1016/j.tre.2009.11.007
https://doi.org/10.1109/TASE.2012.2198642
https://doi.org/10.1109/TASE.2012.2198642

Appendix A

Appendix on the Container

Relocation Problem

A.1 Extensions of CRP-I

A.1.1 First Extension: Non-Uniform Relocations

Suppose that moving some containers has a higher cost than other containers, i.e.,

let 𝑅𝑑 be the cost of relocating container 𝑑. Then CRP-I can be used to solve this

problem just by considering the same constraints and the modified objective function:

𝑀𝑖𝑛

(︃
𝑁−1∑︁
𝑛=1

𝐶∑︁
𝑑=𝑛+1

𝑅𝑑 × 𝑎𝑛,𝑛,𝑑 +
𝐶∑︁

𝑑=𝑁+1

𝑅𝑑 × 𝑏𝑑
)︃
.

A.1.2 Second Extension: Minimizing Crane Travel Time

In this version of the CRP, the goal is to minimize the travel time of the crane (still

in the restricted setting). This extension requires that we are given:

∙ the initial position of the crane. We suppose here that the crane starts at the

position where it delivers containers to trucks (also called the I/O-point). This

can easily be extended to any starting position.

∙ 𝑡(1)𝑠,𝑟 (respectively, 𝑡(2)𝑠), the time to relocate a container from stack 𝑠 to stack 𝑟

183

(respectively, the time to retrieve a container from stack 𝑠).

To extend CRP-I to this case (same as in [71]), we need to withdraw variable 𝑏 and

Constraint (3.8), take 𝑁 = 𝐶 and introduce the binary variable:

∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, 𝐶}, 𝑠 ∈ {1, . . . , 𝑆}, 𝑟 ∈ {1, . . . , 𝑆},

𝑧𝑛,𝑐,𝑠,𝑟 =

⎧⎨⎩ 1 if container 𝑐 “goes” from stack 𝑠 to stack 𝑟 when 𝑛 is the target container,

0 otherwise.

Note that 𝑧𝑛,𝑐,𝑠,𝑠 = 1 means that container 𝑐 is not relocated when container 𝑛 is

the target container, hence for the sake of clarity, we define 𝑡(1)𝑠,𝑠 = 0. CRP-I can be

adapted for minimizing crane travel time as follows:

𝑀𝑖𝑛

(︃
𝑁−1∑︁
𝑛=1

𝐶∑︁
𝑐=𝑛+1

𝑆∑︁
𝑠=1

𝑆∑︁
𝑟=1

2× 𝑡(1)𝑠,𝑟𝑧𝑛,𝑐,𝑠,𝑟 +
𝑁∑︁

𝑛=1

𝑆∑︁
𝑠=1

2× 𝑡(2)𝑠 𝑎𝑛,𝐶+𝑠,𝑛

)︃

s.t.

(3.1)− (3.7), (3.9)− (3.13)

𝑆∑︁
𝑟=1

𝑧𝑛,𝑐,𝑠,𝑟 = 𝑎𝑛,𝐶+𝑠,𝑐, ∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑠 ∈ {1, . . . , 𝑆} (A.1)

𝑆∑︁
𝑟=1

𝑧𝑛,𝑐,𝑟,𝑠 = 𝑎𝑛+1,𝐶+𝑠,𝑐, ∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑠 ∈ {1, . . . , 𝑆} (A.2)

𝑧𝑛,𝑐,𝑠,𝑟 ∈ {0, 1} ∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, 𝐶}, 𝑠 ∈ {1, . . . , 𝑆}, 𝑟 ∈ {1, . . . , 𝑆} (A.3)

The objective function is the total travel time of the crane, the first term accounts

for relocations and the second term for retrievals. Moreover, we only have to add

three types of constraints. Constraint (A.1) ensures that container 𝑐 starts at stack

𝑠 only if it is stack in 𝑠 when 𝑛 is the target container. Similarly, Constraint (A.2)

184

enforces that container 𝑐 ends at stack 𝑠 only if it is in stack 𝑠 when 𝑛 + 1 is the

target container. Finally, variable 𝑧 is binary given Constraint (A.3).

A.1.3 Third Extension: the “Relaxed Restricted” CRP

Inspired from the unrestricted CRP which allows for relocations from a stack not

containing the target container, also called cleaning moves (see [10, 58]), we propose

here a simpler variant called the “relaxed restricted” CRP, where one cleaning move

is allowed per container and per retrieval. In this version, CRP-I uses an extra type

of variable defined as

∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, 𝐶},

𝑥𝑛,𝑐 =

⎧⎨⎩ 1 if container 𝑐 is relocated when 𝑛 is the target container,

0 otherwise.

CRP-I can be adapted to the relaxed restricted case as follows:

𝑀𝑖𝑛

(︃
𝑁−1∑︁
𝑛=1

𝐶∑︁
𝑐=𝑛+1

𝑥𝑛,𝑐 +
𝐶∑︁

𝑑=𝑁+1

𝑏𝑑

)︃

s.t.

(3.1)− (3.8), (3.13)− (3.14)

𝑎𝑛+1,𝑑,𝑐 6 𝑎𝑛,𝑑,𝑐 + 𝑥𝑛,𝑐,

∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑑 ∈ {𝑛+ 1, . . . , 𝐶 + 𝑆} ∖ {𝑐}
(3.9’)

𝑎𝑛+1,𝑑,𝑐 > 𝑎𝑛,𝑑,𝑐 − 𝑥𝑛,𝑐,
∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑑 ∈ {𝑛+ 1, . . . , 𝐶 + 𝑆} ∖ {𝑐}

(3.10’)

185

𝑥𝑛,𝑐 + 𝑎𝑛,𝐶+𝑠,𝑐 + 𝑎𝑛+1,𝐶+𝑠,𝑐 6 2,

∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑠 ∈ {1, . . . , 𝑆}
(3.11’)

𝑥𝑛,𝑐 + 𝑥𝑛,𝑑 + 𝑎𝑛,𝑐,𝑑 + 𝑎𝑛+1,𝑐,𝑑 6 3,

∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑑 ∈ {𝑛+ 1, . . . , 𝐶} ∖ {𝑐}.
(3.12’)

𝑥𝑛,𝑐 > 𝑎𝑛,𝑛,𝑐, ∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, . . . , 𝐶} (A.4)

𝑎𝑛,𝑐,𝑑 + 𝑎𝑛,𝑒,𝑓 + 𝑎𝑛+1,𝑒,𝑑 + 𝑎𝑛+1,𝑐,𝑓 6 3 + 𝑎𝑛,𝑒,𝑑,

∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐, 𝑒 ∈ {𝑛+ 1, . . . , 𝐶 + 𝑆}, 𝑑, 𝑓 ∈ {𝑛+ 1, . . . , 𝐶}, 𝑐 ̸= 𝑑 ̸= 𝑒 ̸= 𝑓,
(A.5)

𝑥𝑛,𝑐 ∈ {0, 1} ∀ 𝑛 ∈ {1, . . . , 𝑁 − 1}, 𝑐 ∈ {𝑛+ 1, 𝐶} (A.6)

First, 𝑎𝑛,𝑛,𝑐 has to be replaced by 𝑥𝑛,𝑐. Moreover, we only have to add three types

of constraints. Constraint (A.4) enforces that containers that are blocking the target

container must be relocated. Constraint (A.5) ensures the LIFO policy holds for

two different stacks. Consider two distinct stacks with at least one container in each

(hence, two containers in each with the artificial container). Let 𝑐, 𝑑 (respectively,

𝑒, 𝑓) be the containers in the first (respectively, second) stack with 𝑐 (respectively, 𝑒)

being below 𝑑 (respectively, 𝑓). If these containers are indeed in two different stacks

(i.e., 𝑎𝑒,𝑑 = 0), then Constraint (A.5) enforces that both 𝑐 below 𝑓 and 𝑒 below 𝑑

are not compatible after 𝑛 has been retrieved. Finally, Constraint (A.6) ensures that

variable 𝑥 is binary. As a final remark, the relaxed restricted CRP is of interest for

practice as it is very hard for port operators to perform several cleaning moves of

one containers during busy periods. Even though, if theoretically in the unrestricted

CRP, a container may be relocated more than once when 𝑛 is the target container, we

have noticed by comparing results with Petering and Hussein [58], on small instances

186

from [9] for 𝑆 = 4, 5 and 𝑇 = 3, 4, that the optimal solutions of the relaxed restricted

CRP were also optimal for the unrestricted CRP. Future research questions include

finding theoretical conditions under which the relaxed restricted optimal solution is

also optimal for the unrestricted CRP. Another interesting question would be to adapt

the binary encoding to the fully unrestricted setting.

A.2 Proof of Lemma 3

Lemma 3. Let ℎ, 𝑆 ∈ N such that 𝑆 > ℎ+1 and Ωℎ,𝑆 be the event defined by equation

(3.18), then we have

P(Ωℎ,𝑆) 6 𝑒−𝜃ℎ(𝑆+1), (3.19)

where

𝜃ℎ =
1

8ℎ

(︂
2

ℎ(ℎ+ 1)

)︂2ℎ

> 0. (3.20)

Proof. Recall that

Ωℎ,𝑆 = {𝐵ℎ,𝑆+1 has at least one “special” stack} .

We know that each configuration of size 𝑆 + 1 can be mapped to a permutation

𝜋 of 𝒮ℎ(𝑆+1) taken uniformly at random. Let 𝑞(.) be the function from 𝒮ℎ(𝑆+1) to R+

defined by

𝑞 : 𝜋 ↦−→ number of “special” stacks in the resulting configuration of 𝜋.

Note that

P
(︀
Ωℎ,𝑆

)︀
= P (𝑞(𝜋) = 0) .

First we compute the expected value of 𝑞(.)

Eℎ,𝑆+1[𝑞] = Eℎ,𝑆+1

[︃
𝑆+1∑︁
𝑖=1

𝜒 (𝑠𝑖 is a “special” stack)

]︃
= (𝑆 + 1)× P ({𝑠1 is a “special” stack}) ,

187

where we use linearity of expectation and the fact that stacks are identically dis-

tributed.

A simple counting implies that:

P ({𝑠1 is a “special” stack})

=
(𝑆 + 1)[(𝑆 + 1)− 1] . . . [(𝑆 + 1)− ℎ+ 1]

ℎ(𝑆 + 1)[ℎ(𝑆 + 1)− 1] . . . [ℎ(𝑆 + 1)− ℎ+ 1]

>

(︂
(𝑆 + 1)− ℎ+ 1

ℎ(𝑆 + 1)

)︂ℎ

>

(︂
2

ℎ(ℎ+ 1)

)︂ℎ

,

where we use 𝑆+1 > ℎ+1 to show the last inequality (Notice that when 𝑆 →∞, the

probability is equivalent to (1/ℎ)ℎ which would guarantee a faster convergence rate).

Therefore we know that

Eℎ,𝑆+1[𝑞] > (𝑆 + 1)×
(︂

2

ℎ(ℎ+ 1)

)︂ℎ

. (A.7)

We claim that 𝑞(.) is well concentrated around its mean. To do so, we prove that

𝑞(.) is 1-Lipschitz.

Define 𝜌 the distance between two permutations 𝜋1, 𝜋2 ∈ 𝒮ℎ(𝑆+1) as

𝜌(𝜋1, 𝜋2) = | {𝑖 ∈ [ℎ(𝑆 + 1)] : 𝜋1(𝑖) ̸= 𝜋2(𝑖)} |.

We want to prove that

|𝑞(𝜋1)− 𝑞(𝜋2)| 6 𝜌(𝜋1, 𝜋2),∀ (𝜋1, 𝜋2) ∈ 𝒮ℎ(𝑆+1).

Let 𝜋1, 𝜋2 ∈ 𝒮ℎ(𝑆+1). Let us first consider the case where 𝜌(𝜋1, 𝜋2) = 2. (Notice that

if 𝜌(𝜋1, 𝜋2) ̸= 0 then 𝜌(𝜋1, 𝜋2) > 2). In that case, we have 𝑖, 𝑗 ∈ {1, . . . , 𝑛} such that

𝜋1(𝑖) = 𝜋2(𝑗) and 𝜋1(𝑗) = 𝜋2(𝑖). Let 𝐵(1) and 𝐵(2) be the configurations generated by

𝜋1 and 𝜋2. Having 𝜌(𝜋1, 𝜋2) = 2 corresponds to the fact that if we swap 2 containers

in 𝐵(1), we get 𝐵(2), we denote those containers 𝑐 = 𝜋1(𝑖), and 𝑑 = 𝜋1(𝑗). We have

three cases:

188

∙ 𝑐 and 𝑑 are both in “special” stacks in 𝐵(1). In this case, swapping them will

not change anything since both their new stacks in 𝐵(2) will also be “special,”

hence |𝑞(𝜋1)− 𝑞(𝜋2)| = 0.

∙ 𝑐 and 𝑑 are both in stacks that are not “special” stacks in 𝐵(1). If 𝑐, 𝑑 > 𝜔ℎ,𝑆 or

𝑐, 𝑑 < 𝜔ℎ,𝑆 then we do not create any new special stack in 𝐵(2). Now suppose

that 𝑐 > 𝜔ℎ,𝑆 and 𝑑 < 𝜔ℎ,𝑆, then the stack of 𝑐 in 𝐵(2) might be a “special”

stack, but the stack of 𝑑 in 𝐵(2) cannot be “special”. Therefore in that case,

|𝑞(𝜋1)− 𝑞(𝜋2)| 6 1.

∙ 𝑐 is in a “special” stack in 𝐵(1) but 𝑑 is not. Now we know that 𝑐 > 𝜔ℎ,𝑆.

If 𝑑 < 𝜔ℎ,𝑆 then the stack of 𝑑 in 𝐵(2) cannot be “special” but the stack of 𝑐

might be and in that case |𝑞(𝜋1) − 𝑞(𝜋2)| 6 1. If 𝑑 > 𝜔ℎ,𝑆, then the stack of

𝑑 in 𝐵(2) is “special” and the stack of 𝑐 in 𝐵(2) is not “special” which gives us

|𝑞(𝜋1) − 𝑞(𝜋2)| = 0. Note that the proof is identical if 𝑑 is in a “special” stack

in 𝐵(1) but 𝑐 is not.

So far we have shown that

If 𝜌(𝜋1, 𝜋2) = 2, then |𝑞(𝜋1)− 𝑞(𝜋2)| 6 1. (A.8)

Now we suppose that 𝜌(𝜋1, 𝜋2) = 𝑘 where 2 6 𝑘 6 ℎ(𝑆 + 1). Note that we can

construct a sequence of permutations (𝜋′
1, 𝜋

′
2, . . . , 𝜋

′
𝑘) such that 𝜋′

1 = 𝜋1, 𝜋′
𝑘 = 𝜋2, and

𝜌(𝜋′
𝑖, 𝜋

′
𝑖+1) = 2. Now using this fact and equation (A.8),

|𝑞(𝜋1)− 𝑞(𝜋2)| =
⃒⃒⃒⃒
⃒
𝑘−1∑︁
𝑖=1

𝑞(𝜋′
𝑖)− 𝑞(𝜋′

𝑖+1)

⃒⃒⃒⃒
⃒

6
𝑘−1∑︁
𝑖=1

|𝑞(𝜋′
𝑖)− 𝑞(𝜋′

𝑖+1)| 6
𝑘−1∑︁
𝑖=1

1 = 𝑘 − 1

6𝑘 = 𝜌(𝜋1, 𝜋2),

which proves that 𝑞(.) is 1-Lipschitz.

189

Now we use Theorem 8.3.3 from [51] which states that

P (𝑞 6 Eℎ,𝑆+1[𝑞]− 𝑡) 6 𝑒
−

𝑡2

8ℎ(𝑆 + 1) ,

and apply it with 𝑡 = Eℎ,𝑆+1[𝑞] and equation (A.7) to get

P (𝑞 = 0) = P (𝑞 6 Eℎ,𝑆+1[𝑞]− Eℎ,𝑆+1[𝑞])

6 𝑒
−
(Eℎ,𝑆+1[𝑞])

2

8ℎ(𝑆 + 1)

6 𝑒−𝜃ℎ(𝑆+1),

where

𝜃ℎ =
1

8ℎ

(︂
2

ℎ(ℎ+ 1)

)︂2ℎ

> 0,

which concludes the proof of Lemma 3.

190

Appendix B

Appendix on the Stochastic

Container Relocation Problem

B.1 Theoretical and Computational Comparison of

the Batch and the Online Models

B.1.1 Theoretical Comparison: Proof of Lemma 4

Lemma 4. Let 𝑦 be a given initial configuration, then we have

𝑓 (𝑦) 6 𝑓 𝑜 (𝑦) .

Proof. We prove this lemma by induction on the number of batches 𝑊 . The lemma

clearly holds if 𝑦 is empty (i.e., 𝑊 = 0). Now consider 𝑊 > 1 and 𝐶1 > 1. For the

sake of clarity of the proof, we define the following notation:

∀ 𝑑 ∈ {1, . . . , 𝐶1} ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑦
𝜁1,...,𝜁𝑑−−−−→ 𝑥𝑑1

𝑥𝑑𝑘
𝑎𝑘−→ 𝑥𝑑𝑘+1, if 𝑑 > 1 , ∀ 𝑘 ∈ {1, . . . , 𝑑− 1}

𝑥𝑑𝑘
𝑎𝑘−→ 𝑦𝑑𝑘−𝑑+2 , ∀ 𝑘 ∈ {𝑑, . . . , 𝐶}

𝑦𝑑𝑘−𝑑+1

𝜁𝑘−→ 𝑥𝑑𝑘 , ∀ 𝑘 ∈ {𝑑+ 1, . . . , 𝐶}.

(B.1)

These notations corresponds to the following process: the first 𝑑 containers to be

191

retrieved are all revealed at once. Then decisions to retrieve these 𝑑 containers are

made. Afterwards, each of the 𝐶−𝑑 remaining containers is revealed one at a time (as

in the online model). Under this revelation process, the minimum expected number

of relocation is given by

𝑓𝑑 (𝑦) = E
𝜁1,...,𝜁𝑑

[︃
min

𝑎1,...,𝑎𝑑

{︃
𝑑∑︁

𝑘=1

𝑟
(︀
𝑥𝑑𝑘
)︀
+ 𝑓 𝑜

(︀
𝑦𝑑2
)︀}︃]︃

, ∀ 𝑑 ∈ {1, . . . , 𝐶1}.

Moreover, using the recursion formula from the online model, we have

𝑓 𝑜
(︀
𝑦𝑑2
)︀
= E

𝜁𝑑

[︂
min
𝑎𝑑

{︀
𝑟
(︀
𝑥𝑑𝑑+1

)︀
+ 𝑓 𝑜

(︀
𝑦𝑑3
)︀}︀]︂

.

In particular, by definition of the online model, we have 𝑓 𝑜 (𝑦) = 𝑓 1 (𝑦).

Using these relations, let us prove that

𝑓𝑑 (𝑦) 6 𝑓𝑑−1 (𝑦) , ∀ 𝑑 ∈ {2, . . . , 𝐶1}. (B.2)

Let 𝑑 ∈ {2, . . . , 𝐶1}, we have

𝑓𝑑 (𝑦) = E
𝜁1,...,𝜁𝑑

[︃
min

𝑎1,...,𝑎𝑑

{︃
𝑑∑︁

𝑘=1

𝑟
(︀
𝑥𝑑𝑘
)︀
+ 𝑓 𝑜

(︀
𝑦𝑑2
)︀}︃]︃

= E
𝜁1,...,𝜁𝑑−1

[︃
E
𝜁𝑑

[︃
min

𝑎1,...,𝑎𝑑−1

{︃
min
𝑎𝑑

{︃
𝑑∑︁

𝑘=1

𝑟
(︀
𝑥𝑑𝑘
)︀
+ 𝑓 𝑜

(︀
𝑦𝑑2
)︀}︃}︃]︃]︃

(B.3)

6 E
𝜁1,...,𝜁𝑑−1

[︃
min

𝑎1,...,𝑎𝑑−1

{︃
E
𝜁𝑑

[︃
min
𝑎𝑑

{︃
𝑑∑︁

𝑘=1

𝑟
(︀
𝑥𝑑−1
𝑘

)︀
+ 𝑓 𝑜

(︀
𝑦𝑑−1
3

)︀}︃]︃}︃]︃
(B.4)

= E
𝜁1,...,𝜁𝑑−1

[︃
min

𝑎1,...,𝑎𝑑−1

{︃
𝑑−1∑︁
𝑘=1

𝑟
(︀
𝑥𝑑−1
𝑘

)︀
+ E

𝜁𝑑

[︂
min
𝑎𝑑

{︀
𝑟
(︀
𝑥𝑑−1
𝑑

)︀
+ 𝑓 𝑜

(︀
𝑦𝑑−1
3

)︀}︀]︂}︃]︃
(B.5)

= E
𝜁1,...,𝜁𝑑−1

[︃
min

𝑎1,...,𝑎𝑑−1

{︃
𝑑−1∑︁
𝑘=1

𝑟
(︀
𝑥𝑑−1
𝑘

)︀
+ 𝑓 𝑜

(︀
𝑦𝑑−1
2

)︀}︃]︃
= 𝑓𝑑−1 (𝑦) ,

where the equality (B.5) holds since 𝑥𝑑−1
𝑘 for 𝑘 ∈ {1, . . . , 𝑑 − 1} does not depend

on 𝑎𝑑 and 𝜁𝑑. Finally, the inequality holds because we have E [min {𝑍1, . . . , 𝑍𝑚}] 6
min {E [𝑍1, . . . , 𝑍𝑚]} for any 𝑍1, . . . , 𝑍𝑚 random variables. Note that we changed 𝑥𝑑𝑘

192

in 𝑥𝑑−1
𝑘 and 𝑦𝑑2 in 𝑦𝑑−1

3 . This change is necessary to stay consistent with the definition

of Equation (B.1). Indeed, the order between the expectations and the minimums in

Equation (B.3) implies that the process of the first 𝑑 retrievals corresponds to

𝑦
𝜁1,...,𝜁𝑑−−−−→ 𝑥𝑑1

𝑎1−→ 𝑥𝑑2
𝑎2−→ . . .

𝑎𝑑−1−−→ 𝑥𝑑𝑑
𝑎𝑑−→ 𝑦𝑑2 ,

whereas the order between the expectations and the minimums in Equation (B.4)

corresponds to the following process for the first 𝑑 retrievals:

𝑦
𝜁1,...,𝜁𝑑−1−−−−−→ 𝑥𝑑−1

1
𝑎1−→ 𝑥𝑑−1

2
𝑎2−→ . . .

𝑎𝑑−1−−→ 𝑦𝑑−1
2

𝜁𝑑−→ 𝑥𝑑−1
𝑑

𝑎𝑑−→ 𝑦𝑑−1
3 .

Recall Equation (4.1) and apply it with 𝑤 = 1 (note that 𝐾1 = 1, thus 𝐾1+𝐶1−
1 = 𝐶1) to get

𝑓 (𝑦) = E
𝜁1,...,𝜁𝐶1

[︃
min

𝑎1,...,𝑎𝐶1

{︃
𝐶1∑︁
𝑘=1

𝑟 (𝑥𝑘) + 𝑓 (𝑦2)

}︃]︃
.

By induction, for all configuration 𝑦2 with 𝑊 − 1 batches we have 𝑓 (𝑦2) 6 𝑓 𝑜 (𝑦2),

thus

𝑓 (𝑦) = E
𝜁1,...,𝜁𝐶1

[︃
min

𝑎1,...,𝑎𝐶1

{︃
𝐶1∑︁
𝑘=1

𝑟 (𝑥𝑘) + 𝑓 (𝑦2)

}︃]︃

6 E
𝜁1,...,𝜁𝐶1

[︃
min

𝑎1,...,𝑎𝐶1

{︃
𝐶1∑︁
𝑘=1

𝑟
(︀
𝑥𝐶1
𝑘

)︀
+ 𝑓 𝑜

(︀
𝑦𝐶1
2

)︀}︃]︃
= 𝑓𝐶1 (𝑦) ,

where we replaced 𝑥𝑘 by 𝑥𝐶1
𝑘 and 𝑦2 by 𝑦𝐶1

2 because, on the right-hand side of the

inequality, the revelation process after the first 𝐶1 containers is the online model.

Finally, since 𝑓 𝑜 (𝑦) = 𝑓 1 (𝑦), by applying Equation (B.2) for each value of 𝑑 ∈
{𝐶1, . . . , 2}, we complete the proof as

𝑓 (𝑦) 6 𝑓𝐶1 (𝑦) 6 𝑓𝐶1−1 (𝑦) 6 . . . 6 𝑓 2 (𝑦) 6 𝑓 1 (𝑦) = 𝑓 𝑜 (𝑦) .

193

As a final remark, Lemma 4 is tight in the general setting. Indeed, there exists an

initial configuration 𝑦 for which 𝑓(𝑦) = 𝑓 𝑜(𝑦). For instance consider the configuration

in Figure 4-2a, then we have 𝑓(𝑦) = 𝑓 𝑜(𝑦) = 13/6.

B.1.2 Computational Comparison

There also exist configurations for which 𝑓(𝑦) < 𝑓 𝑜(𝑦). The difference between these

two values represents the value of taking into account available information (if possi-

ble).

To show a positive difference, we could have compared Experiments 1 and 3.

However, since the average batch size is two, these experiments do not show a positive

difference between both models. Another possibility would have been to use the

instances from Experiment 2. However, as we previously mentioned, such instances

are hard to solve optimally and not approximately.

Instead, we consider another set of simpler instances randomly generated: 100

instances with 𝑇 = 4 tiers, 𝑆 = 4 stacks, and 𝐶 = 12 containers. Each instance has

𝑊 = 3 batches and each batch has 𝐶𝑤 = 4 containers (for 𝑤 = 1, 2, 3). We solve each

of these 100 instances under the batch and the online models. The code and detailed

results are available at https://github.com/vgalle/StochasticCRP. We are especially

interested about
𝑓 𝑜(.)− 𝑓(.)

𝑓(.)
×100, which the percentage difference between the batch

and the online models.

On average over the 100 instances, the optimal expected number of relocations

under the batch model is 6.526 and under the online model is 6.61, hence giving a

difference of 0.084. We observe here that this difference represents more than 1.287

percent of the optimal solution under the batch model, which is quite significant

considering the fact that heuristic 𝐸𝑀 experimentally lies within 2 percent above

the optimal solution. In addition, we noticed that for 25 of these instances, this

difference was more than 2 percent and the maximum of about 4 percent (see Figure

B-1a).

194

https://github.com/vgalle/StochasticCRP

0 0.5 1 1.5 2 2.5 3 3.5 4

B-1a 𝑇 = 4, 𝑆 = 4, and
𝐶 = 12 with 𝑊 = 3 and
𝐶𝑤 = 4 (for 𝑤 = 1, 2, 3).

0 2 4 6 8 10

B-1b 𝑇 = 4, 𝑆 = 4, and 𝐶 = 12
with 𝑊 = 2 and 𝐶𝑤 = 6 (for

𝑤 = 1, 2).

Figure B-1: Distributions of percentage difference between the batch and the online
models from 100 randomly generated instances.

We also consider 100 instances for which 𝑇 = 4, 𝑆 = 4, and 𝐶 = 12, but now

𝑊 = 2 and each batch has 𝐶𝑤 = 6 (for 𝑤 = 1, 2). Figure B-1b shows that this

relative difference appears to increase when the batch size increases. Indeed, the

average difference is about 4.251 percent (batch: 6.751, online: 7.038, difference:

0.287), with 25 instances having a difference of more than 5.3 percent.

B.2 Proof of Lemma 8

Lemma 8. Let 𝑛 be a configuration with 𝜆𝑛 > 0 containers, 𝑙 be a valid lower bound

function, and 𝜖 > 0. If 𝑓(𝑛) = 𝑃𝐵𝐹𝑆𝐴(𝑛, 𝑙, 𝜖), then

E
[︁⃒⃒⃒
𝑓(𝑛)− 𝑓(𝑛)

⃒⃒⃒]︁
6 𝜖.

Proof. The proof is by induction on 𝜆𝑛. Throughout the proof, we use the same

notations as the ones introduced in Algorithm 3. We say that 𝑓 verifies Conditions

(𝐴) and (𝐵) at node 𝑛, if it verifies respectively the first and second inequalities

below:

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+]︂
6
𝜖

2
and E

[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁−]︂
6
𝜖

2
.

Note that if 𝑓 verifies Conditions (𝐴) and (𝐵) at node 𝑛, then E
[︁⃒⃒⃒
𝑓(𝑛)− 𝑓(𝑛)

⃒⃒⃒]︁
6 𝜖,

which would prove the lemma. Given 𝜖 > 0, and 𝑙 a valid lower bound, the induction

195

hypothesis is:

If 𝑓(𝑛) = 𝑃𝐵𝐹𝑆𝐴(𝑛, 𝑙, 𝜖), then 𝑓 verifies Conditions (𝐴) and (𝐵) at node 𝑛.

First, if 𝜆𝑛 6 𝑆, then 𝑓(𝑛) = 𝑏(𝑛) = 𝑓(𝑛) and therefore, 𝑓 verifies Conditions (𝐴)

and (𝐵) at node 𝑛. In this case, 𝑓(𝑛) is actually deterministic since no sampling is

performed by PBFSA. From now on, consider 𝑛 such that 𝜆𝑛 > 𝑆.

Analysis of error at decision nodes

If 𝑛 is a decision node such that 𝑓(𝑛) = 𝑃𝐵𝐹𝑆𝐴(𝑛, 𝑙, 𝜖) and 𝜆𝑛 > 𝑆.

First, if 𝑆 < 𝜆𝑛 6 𝐶𝑊 , then 𝑓(𝑛) = 𝐴*(𝑛) = 𝑓(𝑛), hence 𝑓 verifies

Conditions (𝐴) and (𝐵) at 𝑛.

If 𝜆𝑛 > max{𝑆,𝐶𝑊}, consider 𝑛̃ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑛𝑖∈Γ𝑃𝐵𝐹𝑆𝐴

𝑛

{︁
𝑓(𝑛𝑖)

}︁
and 𝑛* =

𝑎𝑟𝑔𝑚𝑖𝑛
𝑛𝑖∈Δ𝑛

{𝑓(𝑛𝑖)}. Note that 𝑓(𝑛) − 𝑓(𝑛) = 𝑓(𝑛̃) − 𝑓(𝑛*) almost surely

(a.s.). By definition 𝑛̃ and 𝑛* are both such that 𝜆𝑛̃ = 𝜆𝑛* = 𝜆𝑛−1 < 𝜆𝑛.

Consider the following measurable event:

ℰ =
{︁
𝑓(𝑛)− 𝑓(𝑛) = 𝑓(𝑛̃)− 𝑓(𝑛*) > 0

}︁
. (B.6)

∙ Conditioned on ℰ , we have
(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁−
= 0 a.s., thus

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁− ⃒⃒⃒⃒
ℰ
]︂
= 0. (B.7)

Now let us show that conditioned on ℰ , 𝑛* ∈ Γ𝑃𝐵𝐹𝑆𝐴𝑛 a.s.; we sup-

pose by contradiction that a.s. 𝑛* /∈ Γ𝑃𝐵𝐹𝑆𝐴𝑛 . If 𝑘 =
⃒⃒
Γ𝑃𝐵𝐹𝑆𝐴𝑛

⃒⃒
,

then 𝑘 < |Δ𝑛| a.s., and min
𝑗=1,...,𝑘

{︁
𝑓(𝑛(𝑗))

}︁
6 𝑙

(︀
𝑛(𝑘+1)

)︀
a.s. By def-

inition 𝑓 (𝑛̃) = min
𝑗=1,...,𝑘

{︁
𝑓(𝑛(𝑗))

}︁
so 𝑓 (𝑛̃) 6 𝑙

(︀
𝑛(𝑘+1)

)︀
a.s. Since

196

𝑛* /∈ Γ𝑃𝐵𝐹𝑆𝐴𝑛 , there exists 𝑘* ∈ {𝑘 + 1, . . . , |Δ𝑛|} such that 𝑛* =

𝑛(𝑘*). Since
(︀
𝑛(𝑖)
)︀
𝑖∈{1,...,|Δ𝑛|} are ordered by nondecreasing 𝑙(.), we

have 𝑙
(︀
𝑛(𝑘+1)

)︀
6 𝑙

(︀
𝑛(𝑘*)

)︀
= 𝑙 (𝑛*). Therefore 𝑓 (𝑛̃) 6 𝑙 (𝑛*) a.s.;

but, conditioned on ℰ , 𝑓 (𝑛̃) > 𝑓 (𝑛*) > 𝑙 (𝑛*) a.s., which leads to

a contradiction. Thus conditioned on ℰ , 𝑛* ∈ Γ𝑃𝐵𝐹𝑆𝐴𝑛 a.s.. There-

fore, we have 𝑓(𝑛*) = 𝑃𝐵𝐹𝑆𝐴(𝑛*, 𝑙, 𝜖). By induction, 𝑓 verifies

Condition (𝐴) at node 𝑛*, thus

E
[︂(︁
𝑓(𝑛*)− 𝑓(𝑛*)

)︁+]︂
6
𝜖

2
. (B.8)

Finally, since 𝑛̃ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑛𝑖∈Γ𝑃𝐵𝐹𝑆𝐴

𝑛

{︁
𝑓(𝑛𝑖)

}︁
and 𝑛* ∈ Γ𝑃𝐵𝐹𝑆𝐴𝑛 , then 𝑓(𝑛̃) 6

𝑓(𝑛*) a.s., so we have 𝑓(𝑛̃) − 𝑓(𝑛*) 6 𝑓(𝑛*) − 𝑓(𝑛*) a.s. Conse-

quently we have
(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+
=
(︁
𝑓(𝑛̃)− 𝑓(𝑛*)

)︁+
6
(︁
𝑓(𝑛*)− 𝑓(𝑛*)

)︁+
a.s., resulting in

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+ ⃒⃒⃒⃒
ℰ
]︂
6 E

[︂(︁
𝑓(𝑛*)− 𝑓(𝑛*)

)︁+ ⃒⃒⃒⃒
ℰ
]︂
. (B.9)

∙ Conditioned on ℰ , we have
(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+
= 0 a.s., thus

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+ ⃒⃒⃒⃒
ℰ
]︂
= 0. (B.10)

Moreover, by definition 𝑛̃ ∈ Γ𝑃𝐵𝐹𝑆𝐴𝑛 a.s., and 𝑓(𝑛̃) = 𝑃𝐵𝐹𝑆𝐴(𝑛̃, 𝑙, 𝜖),

thus the induction hypothesis can be applied to 𝑛̃. In particular, we

have

E
[︂(︁
𝑓(𝑛̃)− 𝑓(𝑛̃)

)︁−]︂
6
𝜖

2
. (B.11)

197

Finally, it is clear that 𝑓(𝑛̃) > 𝑓(𝑛*), then 𝑓(𝑛̃) − 𝑓(𝑛*) > 𝑓(𝑛̃) −
𝑓(𝑛̃) a.s., which is equivalent to

(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁−
=
(︁
𝑓(𝑛̃)− 𝑓(𝑛*)

)︁−
6(︁

𝑓(𝑛̃)− 𝑓(𝑛̃)
)︁−

a.s., resulting in

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁− ⃒⃒⃒⃒
ℰ
]︂
6 E

[︂(︁
𝑓(𝑛̃)− 𝑓(𝑛̃)

)︁− ⃒⃒⃒⃒
ℰ
]︂
. (B.12)

Finally, note the following observation: Let 𝑌 > 0 a.s., and ℱ be mea-

surable, then we have

E [𝑌 | ℱ]P (ℱ) 6 E [𝑌] and E
[︀
𝑌 | ℱ

]︀
P
(︀
ℱ
)︀
6 E [𝑌] .

Now we can derive

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+]︂
= E

[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+ ⃒⃒⃒⃒
ℰ
]︂
P (ℰ)

6 E
[︂(︁
𝑓(𝑛*)− 𝑓(𝑛*)

)︁+ ⃒⃒⃒⃒
ℰ
]︂
P (ℰ)

6 E
[︂(︁
𝑓(𝑛*)− 𝑓(𝑛*)

)︁+]︂
6
𝜖

2
,

where the first equality comes from Equation (B.10), the first inequality

uses Equation (B.9), the second one holds thanks to
(︁
𝑓(𝑛*)− 𝑓(𝑛*)

)︁+
>

0 a.s., and the last one is Equation (B.8). Therefore, 𝑓 verifies Condition

(𝐴) at node 𝑛.

198

Similarly, we have

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁−]︂
= E

[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁− ⃒⃒⃒⃒
ℰ
]︂
P
(︀
ℰ
)︀

6 E
[︂(︁
𝑓(𝑛̃)− 𝑓(𝑛̃)

)︁− ⃒⃒⃒⃒
ℰ
]︂
P
(︀
ℰ
)︀

6 E
[︂(︁
𝑓(𝑛̃)− 𝑓(𝑛̃)

)︁−]︂
6
𝜖

2
,

where the first equality comes from Equation (B.7), the first inequality

uses Equation (B.12), the second one holds thanks to
(︁
𝑓(𝑛̃)− 𝑓(𝑛̃)

)︁−
>

0 a.s., and the last one is Equation (B.11). Therefore, 𝑓 verifies Condition

(𝐵) at node 𝑛.

Therefore, we have proven that if 𝑛 is a decision node with 𝜆𝑛 > 𝑆, 𝑓

verifies both Conditions (𝐴) and (𝐵) at node 𝑛, which proves the lemma

for decision nodes.

Analysis of error at chance nodes

If 𝑛 is a chance node such that 𝑓(𝑛) = 𝑃𝐵𝐹𝑆𝐴(𝑛, 𝑙, 𝜖), and 𝜆𝑛 > 𝑆.

Let us define 𝑓(𝑛) =
∑︁

𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆𝐴
𝑛

𝑝𝑛𝑛𝑖𝑓(𝑛𝑖), and show that

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+]︂
6
𝜖− 𝜖𝑛
2

and E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁−]︂
6
𝜖− 𝜖𝑛
2

.

(B.13)

Recall that ∀𝑛𝑖 ∈ Ψ𝑃𝐵𝐹𝑆𝐴
𝑛 , 𝜆𝑛𝑖 = 𝜆𝑛, and 𝑛𝑖 are decision nodes such

that 𝑓(𝑛𝑖) = 𝑃𝐵𝐹𝑆𝐴(𝑛𝑖, 𝑙, 𝜖− 𝜖𝑛). Therefore, using the previous result,

we know that E
[︂(︁
𝑓(𝑛𝑖)− 𝑓(𝑛𝑖)

)︁+]︂
6
𝜖− 𝜖𝑛
2

and E
[︂(︁
𝑓(𝑛𝑖)− 𝑓(𝑛𝑖)

)︁−]︂
6

199

𝜖− 𝜖𝑛
2

. We derive the following calculations:

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+]︂
= E

⎡⎣⎛⎝ ∑︁
𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆𝐴

𝑛

𝑝𝑛𝑛𝑖

(︁
𝑓(𝑛𝑖)− 𝑓(𝑛𝑖)

)︁⎞⎠+⎤⎦
6 E

⎡⎣ ∑︁
𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆𝐴

𝑛

𝑝𝑛𝑛𝑖

(︁
𝑓(𝑛𝑖)− 𝑓(𝑛𝑖)

)︁+⎤⎦
=

∑︁
𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆𝐴

𝑛

𝑝𝑛𝑛𝑖E
[︂(︁
𝑓(𝑛𝑖)− 𝑓(𝑛𝑖)

)︁+]︂
6

∑︁
𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆𝐴

𝑛

𝑝𝑛𝑛𝑖
𝜖− 𝜖𝑛
2

=
𝜖− 𝜖𝑛
2

.

Similarly, we have

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁−]︂
= E

⎡⎣⎛⎝ ∑︁
𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆𝐴

𝑛

𝑝𝑛𝑛𝑖

(︁
𝑓(𝑛𝑖)− 𝑓(𝑛𝑖)

)︁⎞⎠−⎤⎦
6 E

⎡⎣ ∑︁
𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆𝐴

𝑛

𝑝𝑛𝑛𝑖

(︁
𝑓(𝑛𝑖)− 𝑓(𝑛𝑖)

)︁−⎤⎦
=

∑︁
𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆𝐴

𝑛

𝑝𝑛𝑛𝑖E
[︂(︁
𝑓(𝑛𝑖)− 𝑓(𝑛𝑖)

)︁−]︂
6

∑︁
𝑛𝑖∈Ψ𝑃𝐵𝐹𝑆𝐴

𝑛

𝑝𝑛𝑛𝑖
𝜖− 𝜖𝑛
2

=
𝜖− 𝜖𝑛
2

,

which proves Equation (B.13).

If 𝑁𝑛(𝜖𝑛) > 𝐶𝑤𝑚𝑖𝑛
!, then 𝑓(𝑛) = 𝑓(𝑛) so 𝑓(𝑛) − 𝑓(𝑛) = 𝑓(𝑛) −

𝑓(𝑛) a.s., and since 𝜖−𝜖𝑛
2 6 𝜖

2 , Equation (B.13) implies that 𝑓 verifies

Conditions (𝐴) and (𝐵) at node 𝑛.

Otherwise, we have 𝑁𝑛(𝜖𝑛) 6 𝐶𝑤𝑚𝑖𝑛
!. Since Ψ𝑃𝐵𝐹𝑆𝐴

𝑛 is constructed

200

using 𝑁𝑛(𝜖𝑛) =
𝜋 (𝑓𝑚𝑎𝑥(𝑛)− 𝑓𝑚𝑖𝑛(𝑛))2

2𝜖2𝑛
samples, thus by using Corollary

2, we have

E
[︁(︀
𝑓(𝑛)− 𝑓(𝑛)

)︀+]︁
6
𝜖𝑛
2

and E
[︁(︀
𝑓(𝑛)− 𝑓(𝑛)

)︀−]︁
6
𝜖𝑛
2

(B.14)

By combining Equations (B.13) and (B.14), we have

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+]︂
6 E

[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁+]︂
+ E

[︁(︀
𝑓(𝑛)− 𝑓(𝑛)

)︀+]︁
6
𝜖− 𝜖𝑛
2

+
𝜖𝑛
2

=
𝜖

2
,

E
[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁−]︂
6 E

[︂(︁
𝑓(𝑛)− 𝑓(𝑛)

)︁−]︂
+ E

[︁(︀
𝑓(𝑛)− 𝑓(𝑛)

)︀−]︁
6
𝜖− 𝜖𝑛
2

+
𝜖𝑛
2

=
𝜖

2
,

which shows that 𝑓 verifies Conditions (𝐴) and (𝐵) at node 𝑛 and con-

cludes the proof.

B.3 Technical Proofs of Section 4.6.1

Corollary 2. Let 𝑋 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] be a real-valued bounded random variable with

mean value E [𝑋]. Let 𝑁 ∈ N and (𝑋1, . . . , 𝑋𝑁) be 𝑁 i.i.d. samples of 𝑋. If

𝑋 =
1

𝑁

𝑁∑︁
𝑖=1

𝑋𝑖, then ∀𝜖 > 0 such that 𝑁 >
𝜋 (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

2

2𝜖2
, we have

E
[︁(︀
𝑋 − E [𝑋]

)︀+]︁
6
𝜖

2
, (4.7)

E
[︁(︀
𝑋 − E [𝑋]

)︀−]︁
6
𝜖

2
, (4.8)

where 𝑥+ = max{𝑥, 0} (resp. 𝑥− = −min{𝑥, 0}) is the positive (resp. negative) part

of 𝑥.

Proof of Corollary 2. For the first result, define

Δ =
(︀
𝑋 − E [𝑋]

)︀+
=
(︀
𝑋 − E [𝑋]

)︀
1
{︀
𝑋 − E [𝑋] > 0

}︀
.

201

Note that Δ is a non-negative random variable, and ∀𝛿 > 0,

{Δ > 𝛿} =
{︀
𝑋 − E [𝑋] > 𝛿

}︀
.

Let 𝐹Δ denote the cumulative distribution function of Δ, thus, using Equation (4.5),

1− 𝐹Δ(𝛿) = P (Δ > 𝛿) = P
(︀
𝑋 − E [𝑋] > 𝛿

)︀
6 𝑒𝑥𝑝

(︁
−2𝑁𝛿2

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
2

)︁
, which gives

E [Δ] =

∫︁ ∞

𝛿=0

(1− 𝐹Δ(𝛿)) 𝑑𝛿 6
∫︁ ∞

𝛿=0

𝑒𝑥𝑝

(︂ −2𝑁𝛿2
(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

2

)︂
𝑑𝛿

=
(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)√

2𝑁

∫︁ ∞

𝑢=0

𝑒𝑥𝑝(−𝑢2)𝑑𝑢 =

√
𝜋 (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

2
√
2𝑁

6
𝜖

2
.

The proof of the second result is identical to the first one if we consider Δ′ =(︀
𝑋 − E [𝑋]

)︀−
=
(︀
E [𝑋]−𝑋

)︀
1
{︀
E [𝑋]−𝑋 > 0

}︀
and notice that ∀𝛿 > 0, {Δ′ > 𝛿} ={︀

𝑋 − E [𝑋] < −𝛿
}︀
, hence 1− 𝐹Δ′(𝛿) 6 𝑒𝑥𝑝

(︁
−2𝑁𝛿2

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
2

)︁
using Equation (4.6).

Lemma 9. Let 𝑛 be a chance node, if

𝑓𝑚𝑖𝑛(𝑛) = min
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)} , (4.9)

and

𝑓𝑚𝑎𝑥(𝑛) = min

{︂
((𝜆𝑛 − 𝑆) (𝑇 − 1))+ + (min {𝑆, 𝜆𝑛} − 1) ,

(︂
2

⌈︂
𝜆𝑛
𝑆

⌉︂
− 1

)︂
max
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)}
}︂
, (4.10)

then

𝑓𝑚𝑖𝑛(𝑛) 6 min
𝑛𝑖∈Ω𝑛

{𝑓(𝑛𝑖)} and 𝑓𝑚𝑎𝑥(𝑛) > max
𝑛𝑖∈Ω𝑛

{𝑓(𝑛𝑖)} .

Proof of Lemma 9. Since 𝑏(𝑛𝑖) 6 𝑓(𝑛𝑖), then we have 𝑓𝑚𝑖𝑛(𝑛) = min
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)} 6

min
𝑛𝑖∈Ω𝑛

{𝑓(𝑛𝑖)}.
By definition 𝑓𝑚𝑎𝑥(𝑛) is the minimum of two valid upper bounds. The first one

comes from a basic observation. If there are 𝜆𝑛 containers remaining to be retrieved

in 𝑛, consider two cases:

∙ If 𝜆𝑛 > 𝑆, take the r𝑡ℎ retrieval. If 𝑆 < 𝑟 6 𝜆𝑛, then to perform this retrieval,

there are at most 𝑇−1 containers blocking the target container so at most 𝑇−1

202

relocations are needed. When there are 𝑆 or fewer containers remaining, each

container (except the lowest one) is at most relocated once, hence we need at

most 𝑆 − 1 relocations. Combining these two facts, the maximum number of

relocations is bounded by (𝜆𝑛 − 𝑆) (𝑇 − 1) + (𝑆 − 1) = ((𝜆𝑛 − 𝑆) (𝑇 − 1))+ +

(min {𝑆, 𝜆𝑛} − 1).

∙ If 𝜆𝑛 6 𝑆, we know that 𝑓(𝑛𝑖) = 𝑏(𝑛𝑖) 6 𝜆𝑛 − 1 = ((𝜆𝑛 − 𝑆) (𝑇 − 1))+ +

(min {𝑆, 𝜆𝑛} − 1).

This shows the validity of the first upper bound.

For the second upper bound, Zehendner et al. [84] prove that, in the online case

with a unique batch, the number of relocations performed by the leveling heuristic (𝐿)

is at most
(︀
2
⌈︀
𝜆𝑛

𝑆

⌉︀
− 1
)︀
𝐵, where 𝐵 is the number of blocking containers. Since 𝐿 is

not using any information about batches (only the height of stacks), this result holds

for both batch and online models with any number of batches. Let 𝑛𝑖 ∈ Ω𝑛, using

this result and taking expectation over the retrieval order of containers not unveiled

in 𝑛𝑖 yet, we have 𝑓(𝑛𝑖) 6 𝑓𝐿(𝑛𝑖) 6
(︀
2
⌈︀
𝜆𝑛

𝑆

⌉︀
− 1
)︀
𝑏(𝑛𝑖). By taking the maximum over

all 𝑛𝑖 ∈ Ω𝑛, the latter inequality results in the second upper bound.

Lemma 10. Let 𝑛 be a chance node, and 𝑤𝑚𝑖𝑛 ∈ {1, . . . ,𝑊} be such that 𝜆𝑛 =

𝐶 − 𝐾𝑤𝑚𝑖𝑛
+ 1 (i.e., the minimum batch in 𝑛). For each Stack 𝑠 of 𝑛 with 𝐻𝑠 > 1

containers, let (𝑐𝑠ℎ)ℎ=1,...,𝐻𝑠 be the containers in 𝑠, where 𝑐𝑠1 is the container at the

bottom and 𝑐𝑠𝐻𝑠 at the top (see Figure 4-9, for the case 𝐻 = 𝐻𝑠). Finally, consider

𝐶𝑠
𝑤𝑚𝑖𝑛

= |{𝑐𝑠ℎ = 𝐾𝑤𝑚𝑖𝑛
, ℎ = 1, . . . , 𝐻𝑠}|. Then we have

min
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)} =
∑︁

𝑠=1,...,𝑆
𝐻𝑠>1

⎛⎜⎜⎜⎜⎜⎝𝐻𝑠 − 𝐶𝑠
𝑤𝑚𝑖𝑛
−

∑︁
ℎ=1,...,𝐻𝑠

𝑐𝑠ℎ ̸=𝐾𝑤𝑚𝑖𝑛

1

{︂
𝑐𝑠ℎ = min

𝑖=1,...,ℎ
{𝑐𝑠𝑖}

}︂
ℎ∑︁

𝑖=1

1 {𝑐𝑠ℎ = 𝑐𝑠𝑖}

⎞⎟⎟⎟⎟⎟⎠ , (4.11)

203

and

max
𝑛𝑖∈Ω𝑛

{𝑏(𝑛𝑖)} =
∑︁

𝑠=1,...,𝑆
𝐻𝑠>1

⎛⎜⎜⎜⎜⎜⎝𝐻𝑠 −
∑︁

ℎ=1,...,𝐻𝑠

𝑐𝑠ℎ ̸=𝐾𝑤𝑚𝑖𝑛

1

{︂
𝑐𝑠ℎ = min

𝑖=1,...,ℎ
{𝑐𝑠𝑖}

}︂
ℎ∑︁

𝑖=1

1 {𝑐𝑠ℎ = 𝑐𝑠𝑖}

⎞⎟⎟⎟⎟⎟⎠ . (4.12)

Proof of Lemma 10. Let 𝑛 be a chance node, and 𝑛𝑖 ∈ Ω𝑛 be one of its decision

offspring, such that all containers in batch 𝑤𝑚𝑖𝑛 have been revealed. Recall that

𝑏(𝑛𝑖) =
∑︁

𝑠=1,...,𝑆

𝑏𝑠(𝑛𝑖), where 𝑏𝑠(𝑛𝑖) is the expected number of blocking containers

in Stack 𝑠. First, for each Stack 𝑠 such that 𝐻𝑠 = 0, 𝑏𝑠(𝑛𝑖) = 0. Hence 𝑏(𝑛𝑖) =∑︁
𝑠=1,...,𝑆
𝐻𝑠>1

𝑏𝑠(𝑛𝑖).

For each Stack 𝑠 such that𝐻𝑠 > 1, consider the containers in this stack (𝑐𝑠𝑖)𝑖=1,...,𝐻𝑠 .

Since all containers labeled 𝐾𝑤𝑚𝑖𝑛
, i.e., from batch 𝑤𝑚𝑖𝑛, are known in 𝑛𝑖, we can write

𝑏𝑠(𝑛𝑖) =
∑︁

ℎ=1,...,𝐻𝑠

P [𝑐𝑠ℎ is blocking in 𝑛𝑖]

=
∑︁

ℎ=1,...,𝐻𝑠

𝑐𝑠ℎ=𝐾𝑤𝑚𝑖𝑛

1 {𝑐𝑠ℎ is blocking in 𝑛𝑖} +
∑︁

ℎ=1,...,𝐻𝑠

𝑐𝑠ℎ ̸=𝐾𝑤𝑚𝑖𝑛

P [𝑐𝑠ℎ is blocking in 𝑛𝑖] .

Fix ℎ ∈ {1, . . . , 𝐻𝑠} and 𝑐𝑠ℎ ̸= 𝐾𝑤𝑚𝑖𝑛
, then the proof of Lemma 5 uses the fact

that P [𝑐𝑠ℎ is blocking in 𝑛𝑖] = 1 −
1

{︃
𝑐𝑠ℎ = min

𝑖=1,...,ℎ
{𝑐𝑠𝑖}

}︃
∑︀ℎ

𝑖=1 1{𝑐𝑠ℎ=𝑐𝑠𝑖} . Finally, it is clear that 0 6∑︁
ℎ=1,...,𝐻𝑠

𝑐𝑠ℎ=𝐾𝑤𝑚𝑖𝑛

1 {𝑐𝑠ℎ is blocking in 𝑛𝑖} 6 𝐶𝑠
𝑤𝑚𝑖𝑛

. Therefore, we can get the corresponding

formulas. As a final remark, note that each of these bounds is tight. Indeed, consider

the offspring of 𝑛, in which all containers in batch 𝑤𝑚𝑖𝑛 are in the decreasing (resp.

increasing) order of retrieval from top to bottom, then this offspring has no (resp.

𝐶𝑠
𝑤𝑚𝑖𝑛

) blocking container(s).

204

B.4 Computational Experiments Tables

Lower bounds PBFS Heuristics
𝑆 𝑇 𝐶 𝑏 𝑏1 𝑏2 EG EM ERI L Rand.
5 3 8 1.64 1.66 1.66 1.70 1.70 1.70 1.70 1.82 2.34

4 10 2.88 2.96 2.99 3.11 3.11 3.13 3.14 3.51 4.62
5 13 4.61 4.88 5.01 5.32 5.40 5.38 5.57 6.17 8.00
6 15 6.28 6.64 7.06 7.59 7.85 7.81 8.09 9.41 12.35

6 3 9 1.68 1.69 1.69 1.74 1.76 1.74 1.74 1.84 2.43
4 12 3.54 3.61 3.63 3.68 3.69 3.68 3.68 4.11 5.59
5 15 5.37 5.57 5.68 5.91 5.97 5.94 6.01 7.21 9.55
6 18 7.19 7.52 7.68 8.23 8.38 8.29 8.63 10.05 13.53

7 3 11 2.82 2.86 2.88 2.88 2.88 2.88 2.89 2.96 4.12
4 14 3.97 4.06 4.10 4.16 4.17 4.17 4.20 4.65 6.47
5 18 6.49 6.65 6.74 6.97 7.05 7.00 7.07 8.46 11.27
6 21 8.82 9.21 9.51 - 10.40 10.35 10.76 12.47 17.69

8 3 12 2.29 2.30 2.30 2.31 2.31 2.31 2.31 2.43 3.23
4 16 4.68 4.73 4.75 4.82 4.83 4.83 4.83 5.41 7.48
5 20 7.20 7.42 7.54 7.85 7.96 7.93 8.06 9.32 13.44
6 24 9.52 9.85 10.09 - 11.10 10.99 11.34 13.29 19.28

9 3 14 2.98 2.98 2.98 3.00 3.00 3.01 3.00 3.19 4.54
4 18 5.63 5.71 5.71 5.73 5.73 5.73 5.73 6.52 9.29
5 23 8.58 8.69 8.77 - 9.05 9.02 9.12 11.16 15.57
6 27 10.38 10.78 10.98 - 11.59 11.58 11.76 14.62 20.93

10 3 15 3.18 3.18 3.18 3.19 3.19 3.20 3.20 3.27 4.75
4 20 6.20 6.23 6.23 6.28 6.30 6.28 6.28 6.98 10.41
5 25 9.10 9.37 9.39 - 9.60 9.60 9.73 11.38 16.64
6 30 11.91 12.28 12.44 - 13.01 12.92 13.15 15.93 23.40

Table B.1: Results of experiment 1: Performance of PBFS, heuristics, and tightness
of lower bounds for a fill rate of 50 percent in the batch model, in the case of small
batches. Bold numbers highlight the best heuristic for a given problem size.

205

Lower bounds PBFS Heuristics
𝑆 𝑇 𝐶 𝑏 𝑏1 𝑏2 EG EM ERI L Rand.
5 3 10 2.83 2.97 3.01 3.08 3.08 3.08 3.11 3.33 4.16

4 13 4.69 4.97 5.09 5.58 5.69 5.64 5.75 6.50 8.22
5 17 7.58 8.52 8.92 - 10.44 10.48 11.04 12.23 15.27
6 20 9.69 10.79 11.46 - 14.53 14.65 15.77 18.47 22.93

6 3 12 3.60 3.70 3.72 3.89 3.89 3.90 3.90 4.32 5.54
4 16 6.20 6.59 6.78 7.28 7.41 7.45 7.61 8.55 11.29
5 20 8.28 8.85 9.16 - 10.39 10.38 10.80 12.85 16.43
6 24 11.67 12.22 12.54 - 15.19 15.17 16.14 19.33 25.03

7 3 14 3.85 3.89 3.91 3.97 3.98 3.98 4.02 4.40 6.05
4 19 6.25 6.60 6.86 7.29 7.37 7.36 7.54 8.89 11.60
5 23 9.72 10.24 10.55 - 11.75 11.71 12.30 14.92 19.65
6 28 13.52 14.41 14.93 - 17.72 17.63 18.81 23.10 30.78

8 3 12 4.47 4.57 4.61 4.66 4.66 4.66 4.68 5.14 6.94
4 21 7.62 7.85 7.98 8.29 8.33 8.35 8.43 9.76 13.26
5 27 11.61 12.08 12.52 - 13.56 13.47 14.10 17.15 23.11
6 32 15.60 16.39 16.78 - 19.28 19.51 20.85 25.89 34.66

9 3 18 4.81 4.96 4.99 5.10 5.10 5.12 5.14 5.66 7.81
4 24 8.98 9.18 9.30 9.58 9.63 9.61 9.76 11.66 16.00
5 30 13.16 13.90 14.29 - 15.65 15.79 16.75 20.03 27.41
6 36 16.77 17.36 17.83 - 20.38 20.40 21.86 28.12 38.12

10 3 20 5.21 5.21 5.21 5.27 5.28 5.28 5.28 5.79 7.86
4 27 9.18 9.54 9.71 - 10.27 10.29 10.37 12.16 16.91
5 34 14.46 14.88 15.16 - 16.13 16.19 16.69 21.06 29.03
6 40 19.55 20.24 20.66 - 23.33 23.20 24.46 32.11 44.07

Table B.2: Results of experiment 1: Performance of PBFS, heuristics, and tightness
of lower bounds for a fill rate of 67 percent in the batch model, in the case of small
batches. Bold numbers highlight the best heuristic for a given problem size.

206

Lower bounds PBFSA Heuristics
𝑆 𝑇 𝐶 𝑏 𝑏1 𝑏2 EG EM ERI L Rand.
5 3 8 1.68 1.68 1.68 1.76 1.77 1.76 1.76 1.87 2.38

4 10 2.96 3.02 3.05 3.33 3.36 3.37 3.38 3.67 4.85
5 13 4.58 4.82 4.93 5.50 5.69 5.65 5.74 6.33 8.22
6 15 6.31 6.72 6.96 7.81 8.28 8.03 8.35 9.49 12.40

6 3 9 1.66 1.67 1.67 1.73 1.75 1.74 1.74 1.82 2.43
4 12 3.61 3.71 3.73 3.93 3.99 3.99 4.00 4.34 5.82
5 15 5.38 5.57 5.64 6.11 6.23 6.23 6.31 7.16 9.65
6 18 7.01 7.26 7.44 - 8.49 8.36 8.61 9.92 13.45

7 3 11 2.76 2.79 2.79 2.85 2.84 2.84 2.83 2.95 4.06
4 14 4.02 4.12 4.15 4.24 4.31 4.29 4.31 4.73 6.52
5 18 6.29 6.39 6.43 6.77 7.00 6.92 7.01 8.20 11.08
6 21 8.69 9.12 9.35 - 10.60 10.52 10.91 12.61 17.79

8 3 12 2.30 2.31 2.31 2.31 2.31 2.32 2.32 2.37 3.19
4 16 4.61 4.62 4.63 4.71 4.74 4.74 4.75 5.25 7.40
5 20 7.31 7.46 7.52 - 8.01 8.01 8.09 9.33 13.25
6 24 9.65 9.95 10.12 - 11.37 11.37 11.67 13.44 19.51

9 3 14 2.93 2.93 2.93 2.95 2.96 2.96 2.96 3.15 4.48
4 18 5.56 5.58 5.59 5.69 5.74 5.70 5.70 6.33 9.07
5 23 8.49 8.64 8.73 - 9.16 9.12 9.16 10.99 15.39
6 27 10.38 10.69 10.90 - 11.77 11.75 11.95 14.65 20.95

10 3 15 3.15 3.16 3.16 3.15 3.17 3.17 3.17 3.25 4.72
4 20 6180 6.20 6.21 6.28 6.35 6.34 6.34 6.92 10.27
5 25 9.13 9.31 9.36 - 9.66 9.63 9.68 11.44 16.73
6 30 12.09 12.35 12.51 - 13.38 13.23 13.42 16.33 23.80

Table B.3: Results of experiment 2: Performance of PBFSA, heuristics, and tightness
of lower bounds for a fill rate of 50 percent in the batch model with larger batches.
Bold numbers highlight the best heuristic for a given problem size.

207

Lower bounds PBFSA Heuristics
𝑆 𝑇 𝐶 𝑏 𝑏1 𝑏2 EG EM ERI L Rand.
5 3 10 2.78 2.87 2.90 3.07 3.08 3.08 3.09 3.36 4.18

4 13 4.71 4.92 5.00 5.70 5.81 5.80 5.89 6.60 8.23
5 17 7.53 8.17 8.44 - 10.38 10.32 10.68 11.96 14.9815
6 20 9.69 10.56 11.12 - 15.00 14.91 16.01 18.22 22.79

6 3 12 3.56 3.63 3.64 3.90 3.90 3.91 3.92 4.28 5.55
4 16 6.12 6.48 6.61 7.17 7.36 7.41 7.48 8.44 11.02
5 20 8.33 8.72 8.90 - 10.36 10.30 10.57 12.54 16.15
6 24 11.77 12.41 12.80 - 15.94 15.91 16.86 19.83 25.45

7 3 14 3.95 4.01 4.02 4.14 4.17 4.15 4.15 4.56 6.11
4 19 6.27 6.56 6.77 - 7.36 7.35 7.52 8.66 11.46
5 23 9.81 10.27 10.54 - 12.08 12.10 12.49 14.78 19.67
6 28 13.64 14.47 14.91 - 18.36 18.26 19.32 23.10 31.03

8 3 12 4.65 4.74 4.76 4.85 4.86 4.85 4.88 5.34 7.14
4 21 7.58 7.86 7.99 - 8.38 8.42 8.50 9.82 13.20
5 27 11.46 11.98 12.28 - 13.73 13.60 14.11 17.00 22.84
6 32 15.45 16.28 16.72 - 19.94 19.83 21.21 25.73 34.70

9 3 18 4.85 4.98 5.02 5.14 5.17 5.20 5.20 5.67 7.77
4 24 8.82 9.00 9.11 - 9.66 9.60 9.72 11.52 15.70
5 30 13.15 13.84 14.18 - 15.91 15.96 16.82 20.16 27.35
6 36 16.85 17.39 17.80 - 20.99 20.83 21.97 28.05 38.04

10 3 20 5.19 5.21 5.22 5.31 5.31 5.31 5.31 5.79 7.92
4 27 9.40 9.66 9.82 - 10.47 10.46 10.54 12.25 16.96
5 34 14.44 14.83 15.07 - 16.29 16.29 16.62 21.12 28.86
6 40 19.49 20.24 20.66 - 23.83 23.65 24.96 32.04 44.12

Table B.4: Results of experiment 2: Performance of PBFSA, heuristics, and tightness
of lower bounds for a fill rate of 67 percent in the batch model with larger batches.
Bold numbers highlight the best heuristic for a given problem size.

208

Lower bounds PBFS Heuristics
𝑆 𝑇 𝐶 𝑏 𝑏1 𝑏2 EG EM ERI L Rand.
5 3 8 1.64 1.66 1.66 1.70 1.70 1.70 1.71 (1.71) 1.82 2.34 (2.34)

4 10 2.88 2.96 2.99 3.11 3.11 3.13 3.14 (3.20) 3.51 4.62 (4.62)
5 13 4.61 4.88 5.01 5.32 5.38 5.38 5.57 (5.58) 6.16 8.00 (8.00)
6 15 6.28 6.64 7.06 7.59 7.85 7.80 8.08 (8.29) 9.41 12.36 (12.35)

6 3 9 1.68 1.69 1.69 1.74 1.76 1.74 1.74 (1.75) 1.84 2.43 (2.43)
4 12 3.54 3.61 3.63 3.68 3.69 3.68 3.68 (3.75) 4.11 5.59 (5.59)
5 15 5.37 5.57 5.68 5.91 5.96 5.94 6.00 (6.18) 7.21 9.54 (9.54)
6 18 7.19 7.52 7.68 8.23 8.38 8.29 8.62 (8.77) 10.05 13.53 (13.53)

7 3 11 2.82 2.86 2.88 2.88 2.88 2.88 2.89 (2.88) 2.96 4.11 (4.11)
4 14 3.97 4.06 4.1 4.16 4.17 4.17 4.21 (4.20*) 4.66 6.47 (6.03*)
5 18 6.49 6.65 6.74 6.97 7.04 7.00 7.07 (7.18) 8.45 11.27 (11.27)
6 21 8.82 9.21 9.51 - 10.40 10.35 10.76 (10.98) 12.46 17.69 (17.69)

8 3 12 2.29 2.3 2.3 2.31 2.31 2.31 2.31 (2.32) 2.43 3.23 (3.23)
4 16 4.68 4.73 4.75 4.82 4.83 4.83 4.83 (4.88) 5.41 7.49 (7.49)
5 20 7.20 7.42 7.54 7.85 7.97 7.94 8.07 (8.27) 9.32 13.44 (13.45)
6 24 9.52 9.85 10.09 - 11.10 10.98 11.34 (11.61) 13.29 19.29 (19.29)

9 3 14 2.98 2.98 2.98 3.00 3.00 3.00 3.00 (3.00) 3.19 4.54 (4.54)
4 18 5.63 5.71 5.71 5.73 5.73 5.73 5.73 (5.80) 6.52 9.29 (9.29)
5 23 8.58 8.69 8.77 - 9.05 9.02 9.12 (9.36) 11.16 15.56 (15.57)
6 27 10.38 10.78 10.98 - 11.59 11.58 11.76 (12.09) 14.62 20.94 (20.93)

10 3 15 3.18 3.18 3.18 3.19 3.19 3.20 3.20 (3.20) 3.27 4.75 (4.75)
4 20 6.20 6.23 6.23 6.28 6.30 6.27 6.28 (6.33) 6.98 10.41 (10.41)
5 25 9.10 9.37 9.39 - 9.61 9.60 9.73 (9.80) 11.38 16.64 (16.63)
6 30 11.91 12.28 12.44 - 13.01 12.92 13.15 (13.51) 15.92 23.41 (23.41)

Table B.5: Results of experiment 3: Performance of heuristics and tightness of lower
bounds for a fill rate of 50 percent in the online model with small batches. Bold
numbers highlight the best heuristic for a given problem size. Numbers in parentheses
are taken from [43].

209

Lower bounds PBFS Heuristics
𝑆 𝑇 𝐶 𝑏 𝑏1 𝑏2 EG EM ERI L Rand.
5 3 10 2.83 2.97 3.01 3.08 3.08 3.08 3.12 (3.10) 3.33 4.16 (4.16)

4 13 4.69 4.97 5.09 5.58 5.68 5.64 5.75 (5.80) 6.50 8.22 (8.22)
5 17 7.58 8.52 8.92 - 10.45 10.48 11.04 (11.15) 12.24 15.28 (15.28)
6 20 9.69 10.79 11.46 - 14.53 14.65 15.77 (16.14) 18.46 22.93 (22.93)

6 3 12 3.6 3.7 3.72 3.89 3.89 3.90 3.90 (3.92) 4.32 5.53 (5.53)
4 16 6.2 6.59 6.78 7.28 7.41 7.45 7.61 (7.68) 8.54 11.29 (11.28)
5 20 8.28 8.85 9.16 - 10.38 10.38 10.80 (10.97) 12.85 16.42 (16.42)
6 24 11.67 12.22 12.54 - 15.17 15.17 16.14 (16.65) 19.33 25.04 (25.03)

7 3 14 3.85 3.89 3.91 3.97 3.98 3.98 4.02 (4.01) 4.40 6.05 (6.05)
4 19 6.25 6.6 6.86 7.29 7.37 7.36 7.54 (7.68) 8.89 11.60 (11.61)
5 23 9.72 10.24 10.55 - 11.76 11.71 12.30 (12.64) 14.92 19.66 (19.65)
6 28 13.52 14.41 14.93 - 17.70 17.64 18.82 (19.49) 23.10 30.77 (30.79)

8 3 12 4.47 4.57 4.61 4.66 4.65 4.66 4.68 (4.7) 5.14 6.94 (6.94)
4 21 7.62 7.85 7.98 8.29 8.32 8.35 8.43 (8.5) 9.75 13.26 (13.25)
5 27 11.61 12.08 12.52 - 13.56 13.47 14.10 (14.44) 17.14 23.11 (23.12)
6 32 15.6 16.39 16.78 - 19.27 19.51 20.85 (21.72) 25.89 34.64 (34.63)

9 3 18 4.81 4.96 4.99 5.10 5.10 5.12 5.14 (5.19) 5.66 7.80 (7.80)
4 24 8.98 9.18 9.3 9.58 9.63 9.61 9.76 (9.92) 11.66 16.01 (16.00)
5 30 13.16 13.9 14.29 - 15.65 15.79 16.75 (16.97) 20.03 27.38 (27.39)
6 36 16.77 17.36 17.83 - 20.38 20.40 21.87 (22.73) 28.13 38.11 (38.14)

10 3 20 5.21 5.21 5.21 5.27 5.28 5.28 5.28 (5.30) 5.79 7.85 (7.86)
4 27 9.18 9.54 9.71 - 10.27 10.29 10.37 (10.50) 12.15 16.92 (16.91)
5 34 14.46 14.88 15.16 - 16.13 16.19 16.69 (17.23) 21.07 29.03 (29.03)
6 40 19.55 20.24 20.66 - 23.33 23.20 24.46 (25.58) 32.11 44.08 (44.07)

Table B.6: Results of experiment 3: Performance of heuristics and tightness of lower
bounds for a fill rate of 67 percent in the online model with small batches. Bold
numbers highlight the best heuristic for a given problem size. Numbers in parentheses
are taken from [43].

210

Appendix C

Appendix on the Yard Crane

Scheduling Problem with Relocations

C.1 Notations Summary

𝑋: the number of rows of the block. Typical values range from 6 to 13.

𝑌 : the number of bays of the block. Typical values range from 10 to 40.

𝑍: the number of tiers of the block, also the maximum number of containers in

a given stack. Typical values range from 3 to 6.

𝑠 = (𝑠𝑥, 𝑠𝑦): a stack of the block identified by its two coordinates.

𝒮𝐵: the set of stacks in the block.

𝑀 : total number of I/O points (𝑀1, number of I/O points on seaside or internal

yard side; 𝑀2, number of I/O points on landside or external yard side). Typical

values are of the order of number of bays for Asian and double-sided styles and

of the order of rows for European style.

𝒮𝐼 : the set of I/O points or “artificial” stacks.

𝒮: the set of all stacks.

211

𝑧𝑖𝑠: initial number of containers stored in stack 𝑠 ∈ 𝒮𝐵. We have 𝑧𝑖𝑠 ∈ {0, . . . , 𝑍}.

𝑠𝑖: initial position of the YC (𝑠𝑖 ∈ 𝒮).

(︀
𝑣𝑥,𝐸, 𝑣𝑥,𝐿

)︀
: YC trolley speed without and with load (both equal to 0.50 con-

tainers/s from Table C.1).

(︀
𝑣𝑦,𝐸, 𝑣𝑦,𝐿

)︀
: YC gantry speed without and with load (0.37 and 0.20 contain-

ers/s).

(︀
𝑣𝑧,𝐸, 𝑣𝑧,𝐿

)︀
: YC speed to lower and hoist the spreader (0.39 and 0.20 contain-

ers/s).

𝑣𝑧: harmonic mean of 𝑣𝑧,𝐸 and 𝑣𝑧,𝐿 (0.26 containers/s).

𝑡ℎ: handling time (or stabilization time) to pick up or set down a container on

a stack (20 s).

𝑡
(𝐸)
𝑠𝑟 : time for an empty drive of the YC from stack 𝑠 to stack 𝑟.

𝑡
(𝐿)
𝑠𝑟 : time for a loaded drive of the YC from stack 𝑠 to stack 𝑟.

𝑡(𝐻) (𝑧): time for lifting/setting down a container from/onto a stack on tier

𝑧 ∈ {1, . . . , 𝑍}. The I/O points is equivalent to set on the ground (i.e., 𝑧 = 1)

𝑁 : the number of requests (or productive moves). Typical values range from 1

to 15. Requests are indexed based on their arrival order.

𝒩𝑠: the indices corresponding to storage requests (𝒩𝑠 ⊂ {1, . . . , 𝑁}).

𝒩𝑟: the indices corresponding to retrieval requests (𝒩𝑟 ⊂ {1, . . . , 𝑁}).

(𝛿−𝑛 , 𝛿
+
𝑛): flexibility of request 𝑛. Request 𝑛 can be served between the 𝑛−𝛿−𝑛 -th

request and the 𝑛+ 𝛿+𝑛 -th request.

𝑧𝑛: the tier at which container 𝑛 (∈ 𝒮𝑟) is stored in stack 𝑠 (∈ 𝐿𝑛). Note that

𝑧𝑛 ∈ {1, . . . , 𝑧𝑖𝑠}.

212

𝒩𝑢: the indices corresponding to unproductive requests implied by retrieval

requests.

𝑁 : the total number of requests (including relocations) to perform by the YC

to fulfill all 𝑁 productive requests.

𝐿𝑛: the set of stacks in which the container 𝑛 ∈ {1, . . . , 𝑁} can be picked up

by the crane.

𝐸𝑛: the set of stacks onto which container 𝑛 ∈ {1, . . . , 𝑁} can be put down.

𝑏𝑛: container directly blocking 𝑛 ∈ 𝒩𝑟 ∪𝒩𝑢. If 𝑛 is on the top of its stack, then

𝑏𝑛 = 0.

𝒮(𝐿): the set of starting stacks for loaded drives of the YC.

𝒮(𝐸): the set of starting stacks for empty drives of the YC.

𝒮𝑅: the set of stacks of the block where there is at least one container that

needs to be retrieved.

∼
𝑧𝑟: the number of containers in stack 𝑟 ∈ 𝒮𝐵 after all containers have been

retrieved and none has been stored or relocated.

𝑚𝑟: the lowest container to be retrieved in 𝑟 ∈ 𝒮𝑅.

𝛾: the weight on the cost-to-go.

𝛼𝑧: the expected number of blocking containers in a stack with 𝑧 containers.

C.2 Technical Proofs

Lemma 11. Let 𝑛 ∈ 𝒩𝑠 ∪𝒩𝑢. Let 𝑣(𝑛) be the tier at which container 𝑛 is stored or

relocated when performing request 𝑛 and 𝑧𝑓𝑟 the number of containers in stack 𝑟 after

213

Variable Value

Trolley speed without load of the YC 1.17 m/s
Trolley speed with load of the YC 1.17 m/s
Gantry speed without load of the YC 2.17 m/s
Gantry speed with load of the YC 1.17 m/s
Hoisting speed without load of the YC 0.93 m/s
Hoisting speed with load of the YC 0.47 m/s
Container width 2.35 m
Container length 5.90 m
Container height 2.39 m
Time to handle and stabilize container 20 s

Table C.1: Inputs of the simulation study (yard speed from Liebherr.com and TEU
size from dsv.com). Assumptions: No acceleration is considered. All containers are
20 feet long and dry. Note that these values are similar to [28]. No separating space
between containers is considered.

performing all 𝑁 requests, then we have

∑︁
𝑛∈𝒩𝑠∪𝒩𝑢

𝑣(𝑛) =
1

2

∑︁
𝑟∈𝒮(𝐸)∩𝒮𝐵

𝑧𝑓𝑟
(︀
𝑧𝑓𝑟 + 1

)︀
− 1

2

∑︁
𝑟∈𝒮(𝐸)∩𝒮𝐵

∼
𝑧𝑟

(︁
∼
𝑧𝑟 + 1

)︁
.

Proof. First, note that each container can only be moved once. Therefore, the tier

at which container 𝑛 is stored or relocated when performing request 𝑛 is the same as

the tier at which container 𝑛 is stored after all 𝑁 requests are performed.

Consider a given stack 𝑟 ∈ 𝒮(𝐸) ∩ 𝒮𝐵. If 𝑧𝑓𝑟 =
∼
𝑧𝑟, then no container was stored or

relocated to stack 𝑟. If 𝑧𝑓𝑟 >
∼
𝑧𝑟, then there are 𝑧𝑓𝑟 −

∼
𝑧𝑟 containers that got stored or

relocated to stack 𝑟, each of which corresponds to a unique 𝑛 ∈ 𝒩𝑠 ∪ 𝒩𝑢. The tiers

of stack 𝑟 at which these containers got stacked range from ∼
𝑧𝑟 + 1, . . . , 𝑧𝑓𝑟 .

By summing this observation for all stacks 𝑟 ∈ 𝒮(𝐸) ∩ 𝒮𝐵, we get the tiers of all

containers 𝑛 ∈ 𝒩𝑠 ∪ 𝒩𝑢. Indeed, no container can be stored or relocated to a stack

214

https://www.liebherr.com/shared/media/maritime-cranes/downloads-and-brochures/brochures/lcc/liebherr-rtg-cranes-technical-description.pdf
http://www.dsv.com/sea-freight/sea-container-description/dry-container

𝑟′ ∈ 𝒮𝐵 ∖ 𝒮(𝐸). Thus:

∑︁
𝑛∈𝒩𝑠∪𝒩𝑢

𝑣(𝑛) =
∑︁

𝑟∈𝒮(𝐸)∩𝒮𝐵

𝑧𝑓𝑟∑︁
𝑧=

∼
𝑧𝑟+1

𝑧

=
∑︁

𝑟∈𝒮(𝐸)∩𝒮𝐵

(︁
𝑧𝑓𝑟 −

∼
𝑧𝑟

)︁ (︁𝑧𝑓𝑟 +
∼
𝑧𝑟 + 1

)︁
2

=
1

2

∑︁
𝑟∈𝒮(𝐸)∩𝒮𝐵

𝑧𝑓𝑟
(︀
𝑧𝑓𝑟 + 1

)︀
− 1

2

∑︁
𝑟∈𝒮(𝐸)∩𝒮𝐵

∼
𝑧𝑟

(︁
∼
𝑧𝑟 + 1

)︁
.

Lemma 12. Let 𝛾 verify Condition (A), 𝑧, 𝑧1, 𝑧2 ∈ {0, . . . , 𝑍} such that 𝑧2 < 𝑧 < 𝑧1,

then we have
𝑧 − 𝑧2
𝑧1 − 𝑧2

𝛽𝑧1 +
𝑧1 − 𝑧
𝑧1 − 𝑧2

𝛽𝑧2 > 𝛽𝑧.

Proof. First, we show that

𝛽𝑧+1 + 𝛽𝑧−1 > 2𝛽𝑧. (C.1)

By definition of 𝛽𝑧, this inequality is equivalent to

𝛾

𝑧(𝑧 + 1)
− 2

𝑣𝑧
> 0.

Since 𝑧 < 𝑧1 6 𝑍, we have 𝑧 6 𝑍 − 1. In addition, 𝛾 verifies Condition (A), i.e.,

𝛾 >
2𝑍(𝑍 − 1)

𝑣𝑧
. Thus, we get

𝛾

𝑧(𝑧 + 1)
− 2

𝑣𝑧
>

𝛾

(𝑍 − 1)𝑍
− 2

𝑣𝑧
>

2

𝑣𝑧
− 2

𝑣𝑧
= 0,

which completes the proof of Equation (C.1). Using Equation (C.1) repeatedly, we

have

𝛽𝑧1 +(𝑧1 − 𝑧) 𝛽𝑧−1 > (𝑧1 − 𝑧 + 1) 𝛽𝑧 and (𝑧 − 𝑧2) 𝛽𝑧+1+𝛽𝑧2 > (𝑧 − 𝑧2 + 1) 𝛽𝑧. (C.2)

215

Consequently, we have

𝑧 − 𝑧2
𝑧1 − 𝑧2

𝛽𝑧1 +
𝑧1 − 𝑧
𝑧1 − 𝑧2

𝛽𝑧2 >
(𝑧 − 𝑧2) (𝑧1 − 𝑧 + 1)

𝑧1 − 𝑧2
𝛽𝑧 −

(𝑧 − 𝑧2) (𝑧1 − 𝑧)
𝑧1 − 𝑧2

𝛽𝑧−1

+
(𝑧1 − 𝑧) (𝑧 − 𝑧2 + 1)

𝑧1 − 𝑧2
𝛽𝑧 −

(𝑧1 − 𝑧) (𝑧 − 𝑧2)
𝑧1 − 𝑧2

𝛽𝑧+1

= 𝛽𝑧 −
(𝑧1 − 𝑧) (𝑧 − 𝑧2)

𝑧1 − 𝑧2
(𝛽𝑧+1 + 𝛽𝑧−1 − 2𝛽𝑧)

> 𝛽𝑧,

where the first inequality holds thanks to Equation (C.2) and the second holds with

Equation (C.1) and 𝑧2 < 𝑧 < 𝑧1. This concludes the proof of Lemma 12.

Lemma 13. Let 𝑤 ∈ 𝒲 ∩ {0, 1}. Let Π(𝑤) be the optimization problem defined as

min
𝐷∈ℒ(𝑤)∩{0,1}

(︀
𝑐𝑇𝐷

)︀
,

and Π(𝑤) the optimization problem defined as

min
𝐷∈ℒ(𝑤)∩{0,1}

(︀
𝑐𝑇𝐷

)︀
,

then Π(𝑤) and Π(𝑤) are equivalent problems.

Proof. To prove the equivalence between Π(𝑤) and Π(𝑤), we show that Π(𝑤) has

several implied equalities/inequalities. Using these implied constraints, we can reduce

the number of variables and constraints to obtain the formulation of Π(𝑤). We prove

the following implied inequalities in this order:

∀ 𝑘 ∈ {1, . . . , 𝑁},

⎧⎨⎩ ∀ 𝑠 ∈ 𝒮(𝐿) ∖ {𝜎𝑘}, ∀𝑟 ∈ 𝒮(𝐸), 𝑑
(𝐿)
𝑠𝑟𝑘 = 0,

∀𝑟 ∈ 𝒮(𝐸) ∖ 𝐸𝜈𝑘 , 𝑑
(𝐿)
𝜎𝑘𝑟𝑘

= 0.
(C.3)

∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

= 1. (C.4)

⎧⎨⎩ 𝑑𝑖𝜎1
= 1,

∀ 𝑠 ∈ 𝒮(𝐿) ∖ {𝜎1} , 𝑑𝑖𝑠 = 0.
(C.5)

216

∀ 𝑘 ∈ {2, . . . , 𝑁}, ∀ 𝑟 ∈ 𝒮(𝐸), ∀𝑠 ∈ 𝒮(𝐿) ∖ {𝜎𝑘}, 𝑑(𝐸)
𝑟𝑠𝑘 = 0. (C.6)

∀ 𝑘 ∈ {2, . . . , 𝑁}, ∀ 𝑟 ∈ 𝐸𝜈𝑘−1
, 𝑑

(𝐸)
𝑟𝜎𝑘𝑘
− 𝑑(𝐿)𝜎𝑘−1,𝑟,𝑘−1 = 0. (C.7)

∀ 𝑘 ∈ {2, . . . , 𝑁}, ∀ 𝑟 ∈ 𝒮(𝐸) ∖ 𝐸𝜈𝑘−1
, 𝑑

(𝐸)
𝑟𝜎𝑘𝑘

= 0. (C.8)

∀𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧 −
∑︁
𝑘∈𝐾𝑟

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

=
∼
𝑧𝑟. (C.9)

∀𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑓𝑟𝑧 = 1, (C.10)

∀𝑟 ∈
(︀
𝒮(𝐸) ∩ 𝒮𝐵

)︀
∖ 𝒮𝐵,

⎧⎨⎩ 𝑓
𝑟
∼
𝑧𝑟
= 1,

∀ 𝑧 ∈ {∼𝑧𝑟 + 1, . . . , 𝑍}, 𝑓𝑟𝑧 = 0.
(C.11)

Proof of implied Constraint (C.3). We first show that

∀ 𝑘 ∈ {1, . . . , 𝑁},∀ 𝑠 ∈ 𝒮(𝐿) ∖ {𝜎𝑘}, ∀𝑟 ∈ 𝒮(𝐸), 𝑑
(𝐿)
𝑠𝑟𝑘 = 0,

∀ 𝑘 ∈ {1, . . . , 𝑁}, ∀𝑟 ∈ 𝒮(𝐸) ∖ 𝐸𝜈𝑘 , 𝑑
(𝐿)
𝜎𝑘𝑟𝑘

= 0.
(C.12)

Let 𝑘 ∈ {1, . . . , 𝑁}. By definition we have 𝑤𝜈𝑘𝜎𝑘𝑘 = 1, so Constraint (5.13) for 𝑛 = 𝜈𝑘

and 𝑠 = 𝜎𝑘 implies that

0 6
∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘
− 𝑤𝜈𝑘𝜎𝑘𝑘 =

∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘
− 1.

We combine this inequality with Constraint (5.8) which implies that

0 =
∑︁

𝑠∈𝒮(𝐿)

𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝑠𝑟𝑘 − 1

=
∑︁

𝑠∈𝒮(𝐿)∖{𝜎𝑘}
𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝑠𝑟𝑘 +

∑︁
𝑟∈𝒮(𝐸)∖𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

+
∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘
− 1

>
∑︁

𝑠∈𝒮(𝐿)∖{𝜎𝑘}
𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝑠𝑟𝑘 +

∑︁
𝑟∈𝒮(𝐸)∖𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

,

217

Since 𝑑(𝐿)𝑠𝑟𝑘 are non-negative, this proves Equation (C.12). We further improve this

constraint by showing that

∀ 𝑘 ∈ {1, . . . , 𝑁},∀ 𝑟 ∈ 𝐸𝜈𝑘 ∖ 𝐸𝜈𝑘 , 𝑑
(𝐿)
𝜎𝑘𝑟𝑘

= 0. (C.13)

Let 𝑘 ∈ {1, . . . , 𝑁} and 𝑟 ∈ 𝐸𝜈𝑘 ∖ 𝐸𝜈𝑘 . First, using Equation (C.12), we have∑︁
𝑠∈𝒮(𝐿)

𝑑
(𝐿)
𝑠𝑟𝑘 = 𝑑

(𝐿)
𝜎𝑘𝑟𝑘

. Moreover, by definition of 𝐸𝜈𝑘 , we must have 𝑟 ∈ 𝒮𝑅 and

∀ 𝑘′ ∈ {𝑙, . . . , 𝑘 − 1}, 𝜈𝑘′ ̸= 𝑚𝑟. Since 𝑤 ∈ 𝒲 , it implies that ∀ 𝑘′ ∈ {1, . . . , 𝑘 − 1},
𝑤𝑚𝑟𝑟𝑘′ = 0, thus

∑︁
𝑘′∈{1,...,𝑘−1}

𝑤𝑚𝑟𝑟𝑘′ = 0. By using both these observations in Con-

straint (5.14), we have

0 >
∑︁

𝑠∈𝒮(𝐿)

𝑑
(𝐿)
𝑠𝑟𝑘 −

∑︁
𝑘′∈{1,...,𝑘−1}

𝑤𝑚𝑟𝑟𝑘′ = 𝑑
(𝐿)
𝜎𝑘𝑟𝑘

.

As 𝑑(𝐿)𝜎𝑘𝑟𝑘
are non-negative, this proves Equation (C.13). Combined with Equation

(C.12), this proves implied Constraint (C.3).

Proof of implied Constraint (C.4). Using implied Constraint (C.3) together

with Constraint (5.8), we directly get implied Constraint (C.4).

Proof of implied Constraint (C.5). We have

𝑑𝑖𝜎1
=
∑︁

𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝜎1𝑟1

=
∑︁
𝑟∈𝐸𝜈1

𝑑
(𝐿)
𝜎1𝑟1

= 1,

where the first equality comes from Constraint (5.9a) for 𝑠 = 𝜎1, the second from

implied Constraint (C.3) and the last from implied Constraint (C.4) for 𝑘 = 1. By

combining this latter fact with Constraint (5.7a), we get

0 =
∑︁

𝑠∈𝒮(𝐿)

𝑑𝑖𝑠 − 1 =
∑︁

𝑠∈𝒮(𝐿)∖{𝜎1}

𝑑𝑖𝑠 + 𝑑𝑖𝜎1
− 1 =

∑︁
𝑠∈𝒮(𝐿)∖{𝜎1}

𝑑𝑖𝑠,

thus, since 𝑑𝑖𝑠 are non-negative, we get implied Constraint (C.5).

218

Proof of implied Constraint (C.6). Let 𝑘 ∈ {2, . . . , 𝑁}, we first have

∑︁
𝑟∈𝒮(𝐸)

𝑑
(𝐸)
𝑟𝜎𝑘𝑘

=
∑︁

𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

=
∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

= 1,

where the first equality is Constraint (5.9b) for 𝑠 = 𝜎𝑘, the second equality comes

from implied Constraint (C.3) and the last from implied Constraint (C.4). Based on

this observation, we use Constraint (5.7b) to get

0 =
∑︁

𝑟∈𝒮(𝐸)

𝑠∈𝒮(𝐿)

𝑑
(𝐸)
𝑟𝑠𝑘 − 1 =

∑︁
𝑟∈𝒮(𝐸)

𝑠∈𝒮(𝐿)∖{𝜎𝑘}

𝑑
(𝐸)
𝑟𝑠𝑘 +

∑︁
𝑟∈𝒮(𝐸)

𝑑
(𝐸)
𝑟𝜎𝑘𝑘
− 1 =

∑︁
𝑟∈𝒮(𝐸)

𝑠∈𝒮(𝐿)∖{𝜎𝑘}

𝑑
(𝐸)
𝑟𝑠𝑘

which by non-negativity of 𝑑(𝐸)
𝑟𝑠𝑘 proves Equation (C.6).

Proof of implied Constraint (C.7). Let 𝑘 ∈ {2, . . . , 𝑁} and 𝑟 ∈ 𝐸𝜈𝑘−1
, we have

0 =
∑︁

𝑠∈𝒮(𝐿)

𝑑
(𝐸)
𝑟𝑠𝑘 −

∑︁
𝑠∈𝒮(𝐿)

𝑑
(𝐿)
𝑠,𝑟,𝑘−1 = 𝑑

(𝐸)
𝑟𝜎𝑘𝑘
− 𝑑(𝐿)𝜎𝑘−1,𝑟,𝑘−1,

which proves implied Constraint (C.7). The first equality is Constraint (5.10) since

𝑟 ∈ 𝐸𝜈𝑘−1
⊂ 𝐸𝜈𝑘−1

⊂ 𝒮(𝐸). The second equality results from both implied Constraints

(C.6) and (C.3).

Proof of implied Constraint (C.8). Let 𝑘 ∈ {2, . . . , 𝑁} and 𝑟 ∈ 𝒮(𝐸) ∖ 𝐸𝜈𝑘−1
.

Using both implied Constraints (C.7) and (C.3), we have

𝑑
(𝐸)
𝑟𝜎𝑘𝑘

= 𝑑
(𝐿)
𝜎𝑘−1,𝑟,𝑘−1 = 0,

proving implied Constraint (C.8).

219

Proof of implied Constraint (C.9). Let 𝑟 ∈ 𝒮(𝐸)∩𝒮𝐵. Using implied Constraint

(C.3) and by definition of 𝐾𝑟, we note that

∑︁
𝑠∈𝒮(𝐿)

𝑘∈{1,...,𝑁}

𝑑
(𝐿)
𝑠𝑟𝑘 =

∑︁
𝑘∈{1,...,𝑁}

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

=
∑︁
𝑘∈𝐾𝑟

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

.

By replacing this expression in Constraint (5.12), we get

∀ 𝑟 ∈ 𝒮(𝐸) ∩ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧 −
∑︁
𝑘∈𝐾𝑟

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

=
∼
𝑧𝑟. (C.14)

Since 𝒮𝐵 ⊂ 𝒮(𝐸) ∩ 𝒮𝐵, this proves implied Constraint (C.9).

Proof of implied Constraint (C.10). This implied constraint is directly proven

by Constraint (5.11) since 𝑆𝐵 ⊂ 𝒮(𝐸) ∩ 𝒮𝐵.

Proof of implied Constraint (C.11). Let 𝑟 ∈
(︀
𝒮(𝐸) ∩ 𝒮𝐵

)︀
∖ 𝒮𝐵. By definition

it implies that 𝑟 ∈ 𝒮(𝐸) and 𝑟 /∈ ⋃︀𝑘∈{1,...,𝑁}𝐸𝜈𝑘 , i.e., ∀𝑘 ∈ {1, . . . , 𝑁}, 𝑟 /∈ 𝐸𝜈𝑘 . In

conclusion, ∀𝑘 ∈ {1, . . . , 𝑁} 𝑟 ∈ 𝒮(𝐸) ∖ 𝐸𝜈𝑘 . Using this fact with implied Constraint

(C.3) we have ∀𝑘 ∈ {1, . . . , 𝑁}, 𝑑(𝐿)𝜎𝑘𝑟𝑘
= 0, thus

∑︁
𝑘∈{1,...,𝑁}

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

= 0.

220

Consequently, we have

0 =
∼
𝑧𝑟 −

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧 +
∑︁

𝑘∈{1,...,𝑁}

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

=
∼
𝑧𝑟 −

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧

=
∼
𝑧𝑟(1− 𝑓𝑟∼

𝑧𝑟
) +

∑︁
𝑧∈{∼

𝑧𝑟+1,...,𝑍}

𝑧𝑓𝑟𝑧

>
∑︁

𝑧∈{∼
𝑧𝑟+1,...,𝑍}

𝑧𝑓𝑟𝑧

>
∑︁

𝑧∈{∼
𝑧𝑟+1,...,𝑍}

𝑓𝑟𝑧,

and since 𝑓𝑟𝑧 are non-negative, this proves that ∀ 𝑧 ∈ {∼𝑧𝑟 + 1, . . . , 𝑍}, 𝑓𝑟𝑧 = 0. We

note that the first equality comes from Constraint (5.12), the second from the previous

observation, the first inequality from 𝑓
𝑟
∼
𝑧𝑟

6 1 and the second inequality from 𝑧 > 1

for 𝑧 ∈ {∼𝑧𝑟 + 1, . . . , 𝑍}. Finally, using this fact and Constraint (5.11), we have

1 =
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑓𝑟𝑧 = 𝑓
𝑟
∼
𝑧𝑟
,

which proves implied Constraint (C.11).

Redundancy of original constraints. We now show that Constraints (5.7)-(5.14)

are redundant with implied Constraints (C.3)-(C.11).

Constraint (5.7a) is redundant with implied Constraint (C.5):

∑︁
𝑠∈𝑆(𝐿)

𝑑𝑖𝑠 = 𝑑𝑖𝜎1
= 1.

Constraint (5.7b) is redundant with implied Constraints (C.6), (C.8), (C.7) and (C.5):

∀ 𝑘 ∈ {2, . . . , 𝑁},
∑︁

𝑟∈𝒮(𝐸)

𝑠∈𝒮(𝐿)

𝑑
(𝐸)
𝑟𝑠𝑘 =

∑︁
𝑟∈𝐸𝜈𝑘−1

𝑑
(𝐸)
𝑟𝜎𝑘𝑘

=
∑︁

𝑟∈𝐸𝜈𝑘−1

𝑑
(𝐿)
𝜎𝑘−1,𝑟,𝑘−1 = 1.

221

Constraint (5.8) is redundant with implied Constraints (C.3) and (C.5):

∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁

𝑠∈𝒮(𝐿)

𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝑠𝑟𝑘 =

∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘,𝑟,𝑘

= 1.

Constraint (5.9a) is redundant with implied Constraints (C.3), (C.5) and (C.4):

∀ 𝑠 ∈ 𝒮(𝐿),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
if 𝑠 = 𝜎1,

∑︁
𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝜎1𝑟1
− 𝑑𝑖𝜎1

=
∑︁
𝑟∈𝐸𝜈1

𝑑
(𝐿)
𝜎1𝑟1
− 1 = 1− 1 = 0.

if 𝑠 ̸= 𝜎1,
∑︁

𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝑠𝑟1 − 𝑑𝑖𝑠 = 0− 0 = 0.

Constraint (5.9b) is redundant with implied Constraints (C.3), (C.6), (C.8) and (C.4):

∀ 𝑠 ∈ 𝒮(𝐿)

∀ 𝑘 ∈ {2, . . . , 𝑁}
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
if 𝑠 = 𝜎𝑘,

∑︁
𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝜎𝑘𝑟𝑘
−
∑︁

𝑟∈𝒮(𝐸)

𝑑
(𝐸)
𝑟𝜎𝑘𝑘

=
∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘
−

∑︁
𝑟∈𝐸𝜈𝑘−1

𝑑
(𝐿)
𝜎𝑘−1,𝑟,𝑘−1 = 1− 1 = 0.

if 𝑠 ̸= 𝜎𝑘,
∑︁

𝑟∈𝒮(𝐸)

𝑑
(𝐿)
𝑠𝑟𝑘 −

∑︁
𝑟∈𝒮(𝐸)

𝑑
(𝐸)
𝑟𝑠𝑘 = 0− 0 = 0.

Constraint (5.10) is redundant with implied Constraints (C.3), (C.6), (C.8) and (C.4):

∀ 𝑟 ∈ 𝒮(𝐸)

∀ 𝑘 ∈ {2, . . . , 𝑁}
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
if 𝑟 ∈ 𝐸𝜈𝑘 ,

∑︁
𝑠∈𝒮(𝐿)

𝑑
(𝐸)
𝑟𝑠𝑘 −

∑︁
𝑠∈𝒮(𝐿)

𝑑
(𝐿)
𝑠,𝑟,𝑘−1 = 𝑑

(𝐿)
𝜎𝑘−1,𝑟,𝑘−1 − 𝑑

(𝐿)
𝜎𝑘−1,𝑟,𝑘−1 = 0.

if 𝑟 /∈ 𝐸𝜈𝑘 ,
∑︁

𝑠∈𝒮(𝐿)

𝑑
(𝐸)
𝑟𝑠𝑘 −

∑︁
𝑠∈𝒮(𝐿)

𝑑
(𝐿)
𝑠,𝑟,𝑘−1 = 𝑑

(𝐸)
𝑟𝜎𝑘𝑘
− 𝑑(𝐿)𝜎𝑘−1,𝑟,𝑘−1 = 0− 0 = 0.

Constraint (5.11) is redundant with implied Constraints (C.10) and (C.11):

∀ 𝑟 ∈ 𝒮𝐵,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if 𝑟 ∈ 𝒮𝐵,

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝑓𝑟𝑧 = 1,

if 𝑟 ∈/∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑓𝑟𝑧 = 𝑓
𝑟
∼
𝑧𝑟
= 1.

222

Constraint (5.12) is redundant with implied Constraints (C.3), (C.9) and (C.11):

∀ 𝑟 ∈ 𝒮𝐵,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

if 𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧 −
∑︁

𝑠∈𝒮(𝐿)

𝑘∈{1,...,𝑁}

𝑑
(𝐿)
𝑠𝑟𝑘 =

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧 −
∑︁
𝑘∈𝐾𝑟

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

=
∼
𝑧𝑟.

if 𝑟 /∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧 −
∑︁

𝑠∈𝒮(𝐿)

𝑘∈{1,...,𝑁}

𝑑
(𝐿)
𝑠𝑟𝑘 =

∼
𝑧𝑟 − 0 =

∼
𝑧𝑟.

Constraint (5.13) is redundant with implied Constraints (C.3) and (C.4):

∀ 𝑛 ∈ {1, . . . , 𝑁}
∀ 𝑠 ∈ 𝐿𝑛

∀ 𝑘 ∈ {1, . . . , 𝑁}
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
if 𝑛 = 𝜈𝑘 and 𝑠 = 𝜎𝑘,

∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘
− 𝑤𝜈𝑘𝜎𝑘𝑘 =

∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘
− 1 = 0 > 0.

if 𝑛 ̸= 𝜈𝑘 or 𝑠 ̸= 𝜎𝑘,
∑︁
𝑟∈𝐸𝑛

𝑑
(𝐿)
𝑠𝑟𝑘 − 𝑤𝑛𝑠𝑘 =

∑︁
𝑟∈𝐸𝑛

𝑑
(𝐿)
𝑠𝑟𝑘 > 0.

Recall that by definition if 𝑟 ∈ 𝒮𝑅∩𝐸𝜈𝑘 then ∃ 𝑘′ ∈ {1, . . . , 𝑘−1} such that 𝜈𝑘′ = 𝑚𝑟,

i.e., 𝑤𝑚𝑟𝑟𝑘′ = 1 so
∑︁

𝑘′∈{1,...,𝑘−1}

𝑤𝑚𝑟𝑟𝑘′ = 1. Thus, Constraint (5.14) is redundant with

implied Constraints (C.3):

∀ 𝑟 ∈ 𝒮𝑅
∀ 𝑘 ∈ {1, . . . , 𝑁}

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
if 𝑟 ∈ 𝐸𝜈𝑘 ,

∑︁
𝑠∈𝒮(𝐿)

𝑑
(𝐿)
𝑠𝑟𝑘 −

∑︁
𝑘′∈{1,...,𝑘−1}

𝑤𝑚𝑟𝑟𝑘′ 6 𝑑
(𝐿)
𝜎𝑘𝑟𝑘
− 1 6 0.

if 𝑟 /∈ 𝐸𝜈𝑘 ,
∑︁

𝑠∈𝒮(𝐿)

𝑑
(𝐿)
𝑠𝑟𝑘 −

∑︁
𝑘′∈{1,...,𝑘−1}

𝑤𝑚𝑟𝑟𝑘′ = 0−
∑︁

𝑘′∈{1,...,𝑘−1}

𝑤𝑚𝑟𝑟𝑘′ 6 0.

Thus Π(𝑤) is equivalent to

min
𝐷∈{0,1}

(︀
𝑐𝑇𝐷

)︀
s.t. 𝐷 satisfice Constraints (C.3)-(C.11)

Equivalence of Π(𝑤) and Π(𝑤). Among Constraints (C.3)-(C.11), some of them

fix variables to 0 or 1. In summary, we have

∀ 𝑘 ∈ {1, . . . , 𝑁},

⎧⎨⎩ ∀ 𝑠 ∈ 𝒮(𝐿) ∖ {𝜎𝑘}, ∀𝑟 ∈ 𝒮(𝐸), 𝑑
(𝐿)
𝑠𝑟𝑘 = 0,

∀𝑟 ∈ 𝒮(𝐸) ∖ 𝐸𝜈𝑘 , 𝑑
(𝐿)
𝜎𝑘𝑟𝑘

= 0.

223

⎧⎨⎩ 𝑑𝑖𝜎1
= 1,

∀ 𝑠 ∈ 𝒮(𝐿) ∖ {𝜎1} , 𝑑𝑖𝑠 = 0.

∀ 𝑘 ∈ {2, . . . , 𝑁},

⎧⎨⎩ ∀ 𝑟 ∈ 𝒮(𝐸), ∀𝑠 ∈ 𝒮(𝐿) ∖ {𝜎𝑘}, 𝑑(𝐸)
𝑟𝑠𝑘 = 0,

∀ 𝑟 ∈ 𝒮(𝐸) ∖ 𝐸𝜈𝑘−1
, 𝑑

(𝐸)
𝑟𝜎𝑘𝑘

= 0,

∀𝑟 ∈
(︀
𝒮(𝐸) ∩ 𝒮𝐵

)︀
∖ 𝒮𝐵,

⎧⎨⎩ 𝑓
𝑟
∼
𝑧𝑟
= 1,

∀ 𝑧 ∈ {∼𝑧𝑟 + 1, . . . , 𝑍}, 𝑓𝑟𝑧 = 0.

These constraints and their associated variables can be treated as constant for the

sub-problem Π(𝑤). By deleting these constraints and variables, we get that Π(𝑤) is

equivalent to the optimization problem Π1(𝑤) defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎛⎜⎜⎜⎝ ∑︁
𝑘∈{2,...,𝑁}
𝑟∈𝐸𝜈𝑘−1

𝑡(𝐸)
𝑟𝜎𝑘
𝑑
(𝐸)
𝑟𝜎𝑘𝑘

+
∑︁

𝑘∈{1,...,𝑁}
𝑟∈𝐸𝜈𝑘

𝑡(𝐿)𝜎𝑘𝑟
𝑑
(𝐿)
𝜎𝑘𝑟𝑘

+
∑︁
𝑟∈𝒮𝐵

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝛽𝑧𝑓𝑟𝑧

⎞⎟⎟⎟⎠

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

= 1,

∀ 𝑘 ∈ {2, . . . , 𝑁}, ∀ 𝑟 ∈ 𝐸𝜈𝑘−1
, 𝑑

(𝐸)
𝑟𝜎𝑘𝑘
− 𝑑(𝐿)𝜎𝑘−1,𝑟,𝑘−1 = 0,

∀ 𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧 −
∑︁
𝑘∈𝐾𝑟

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

=
∼
𝑧𝑟,

∀ 𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑓𝑟𝑧 = 1.

where the cost is the equal to 𝑐𝑇𝐷 minus the constant 𝑡(𝐸)

𝑠𝑖𝜎1
+

∑︁
𝑟∈(𝒮(𝐸)∩𝒮𝐵)∖𝒮𝐵

𝛼∼
𝑧𝑟

. Using

the second constraint of Π1(𝑤) (which also is implied Constraint (C.7)), we can replace

224

𝑑
(𝐸)
𝑟𝜎𝑘𝑘

by 𝑑(𝐿)𝜎𝑘−1,𝑟,𝑘−1, thus Π1(𝑤) is equivalent to the problem Π2(𝑤) defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎛⎜⎜⎜⎝ ∑︁
𝑘∈{1,...,𝑁−1}

𝑟∈𝐸𝜈𝑘

(︁
𝑡(𝐸)
𝑟𝜎𝑘+1

+ 𝑡(𝐿)𝜎𝑘𝑟

)︁
𝑑
(𝐿)
𝜎𝑘𝑟𝑘

+
∑︁
𝑘=𝑁
𝑟∈𝐸𝜈𝑘

𝑡(𝐿)𝜎𝑘𝑟
𝑑
(𝐿)
𝜎𝑘𝑟𝑘

+
∑︁
𝑟∈𝒮𝐵

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝛽𝑧𝑓𝑟𝑧

⎞⎟⎟⎟⎠

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ 𝑘 ∈ {1, . . . , 𝑁},
∑︁
𝑟∈𝐸𝜈𝑘

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

= 1,

∀ 𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧 −
∑︁
𝑘∈𝐾𝑟

𝑑
(𝐿)
𝜎𝑘𝑟𝑘

=
∼
𝑧𝑟,

∀ 𝑟 ∈ 𝒮𝐵,
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑓𝑟𝑧 = 1.

By changing the variables of Π2(𝑤) such that

∀ 𝑘 ∈ {1, . . . , 𝑁}, ∀ 𝑟 ∈ 𝐸𝜈𝑘 , 𝑑𝑟𝑘 = 𝑑
(𝐿)
𝜎𝑘𝑟𝑘

,

and

∀ 𝑠 ∈ 𝒮𝐵, ∀ 𝑧 ∈ {
∼
𝑧𝑟, . . . , 𝑍}, 𝑓 𝑟𝑧 = 𝑓𝑟𝑧,

and by definition of 𝑡𝑟𝑘, we obtain Π(𝑤). Consequently, Π(𝑤) and Π2(𝑤) are identical.

Since Π(𝑤) is equivalent to Π1(𝑤), itself equivalent to Π2(𝑤), we have proven that

Π(𝑤) and Π(𝑤) are equivalent problems.

225

Theorem 3. Let 𝑤 ∈ 𝒲 ∩ {0, 1} and 𝐷* = (𝑑*, 𝑓 *) be an extreme point of ℒ(𝑤),
then

𝑑* ∈ {0, 1}.

Proof. Let 𝐷* = (𝑑*, 𝑓 *) be an extreme point of ℒ(𝑤) (not necessarily optimal). Let

us prove by contradiction that 𝑑* ∈ {0, 1}. We suppose by contradiction that there

exists 𝑙 ∈ {1, . . . , 𝑁} and 𝑝 ∈ 𝐸𝜈𝑙 such that 𝑑*𝑝𝑙 /∈ {0, 1}. Since 𝐷* ∈ ℒ(𝑤), we have

1 =
∑︁
𝑟∈𝐸𝜈𝑙

𝑑*𝑟𝑙 = 𝑑*𝑝𝑙 +
∑︁

𝑟∈𝐸𝜈𝑙
∖{𝑝}

𝑑*𝑟𝑙

Therefore, we have
∑︁

𝑟∈𝐸𝜈𝑙
∖{𝑝}

𝑑*𝑟𝑙 /∈ {0, 1}. Since 0 6 𝑑*𝑟𝑙 6 1, there exists 𝑞 ∈ 𝐸𝜈𝑙 ∖ {𝑝}

such that 𝑑*𝑞𝑙 /∈ {0, 1}. We consider two distinct cases:

If 𝜈𝑙 ∈ 𝒩𝑟, then 𝐸𝜈𝑙 ∩ 𝒮𝐵 = ∅, thus 𝐸𝜈𝑙 ∩ 𝒮𝐵 = ∅, thus 𝑝, 𝑞 /∈ 𝒮𝐵. Consider

𝜖 = min
{︀
𝑑*𝑝𝑙, 1− 𝑑*𝑝𝑙, 𝑑*𝑞𝑙, 1− 𝑑*𝑞𝑙

}︀
> 0,

and 𝐷1 = (𝑑1, 𝑓 *) and 𝐷2 = (𝑑2, 𝑓 *) such that

𝑑1𝑝𝑙 = 𝑑*𝑝𝑙 − 𝜖 𝑑2𝑝𝑙 = 𝑑*𝑝𝑙 + 𝜖

𝑑1𝑞𝑙 = 𝑑*𝑞𝑙 + 𝜖 𝑑2𝑞𝑙 = 𝑑*𝑞𝑙 − 𝜖

otherwise 𝑑1𝑟𝑘 = 𝑑2𝑟𝑘 = 𝑑*𝑟𝑘. Let us show that 𝐷1, 𝐷2 ∈ ℒ(𝑤). First, by definition of 𝜖,

0 6 𝑑1, 𝑑2 6 1. Moreover, let us prove that ∀𝑘 ∈ {1, . . . , 𝑁},
∑︁
𝑟∈𝐸𝜈𝑘

𝑑1𝑟𝑘 =
∑︁
𝑟∈𝐸𝜈𝑘

𝑑2𝑟𝑘 =∑︁
𝑟∈𝐸𝜈𝑘

𝑑*𝑟𝑘. Indeed, let 𝑘 ∈ {1, . . . , 𝑁}

∙ If 𝑘 ̸= 𝑙, then ∀ 𝑟 ∈ 𝐸𝜈𝑘 , 𝑑1𝑟𝑘 = 𝑑2𝑟𝑘 = 𝑑*𝑟𝑘, thus
∑︁
𝑟∈𝐸𝜈𝑘

𝑑1𝑟𝑘 =
∑︁
𝑟∈𝐸𝜈𝑘

𝑑2𝑟𝑘 =
∑︁
𝑟∈𝐸𝜈𝑘

𝑑*𝑟𝑘.

226

∙ If 𝑘 = 𝑙, then we have

∑︁
𝑟∈𝐸𝜈𝑙

𝑑1𝑟𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑1𝑟𝑙 + 𝑑1𝑝𝑙 + 𝑑1𝑞𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑*𝑟𝑙 + 𝑑*𝑝𝑙 − 𝜖+ 𝑑*𝑞𝑙 + 𝜖 =
∑︁
𝑟∈𝐸𝜈𝑙

𝑑*𝑟𝑙,

and

∑︁
𝑟∈𝐸𝜈𝑙

𝑑2𝑟𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑2𝑟𝑙 + 𝑑2𝑝𝑙 + 𝑑2𝑞𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑*𝑟𝑙 + 𝑑*𝑝𝑙 + 𝜖+ 𝑑*𝑞𝑙 − 𝜖 =
∑︁
𝑟∈𝐸𝜈𝑙

𝑑*𝑟𝑙.

Since 𝑝, 𝑞 /∈ 𝒮𝐵, then ∀𝑟 ∈ 𝒮𝐵,
∑︁

𝑘∈{1,...,𝑁}

𝑑1𝑟𝑘 =
∑︁

𝑘∈{1,...,𝑁}

𝑑2𝑟𝑘 =
∑︁

𝑘∈{1,...,𝑁}

𝑑*𝑟𝑘. There-

fore, since only these sums involve the variable 𝑑 in the constraints of ℒ(𝑤), and

that 𝐷* ∈ ℒ(𝑤), then 𝐷1, 𝐷2 ∈ ℒ(𝑤). However, it is clear that 𝑑* = 1
2
(𝑑1 + 𝑑2) so

𝐷* = 1
2
(𝐷1 +𝐷2), and since 𝜖 > 0, 𝐷1 ̸= 𝐷2 ̸= 𝐷*, In conclusion, 𝐷* is not an

extreme point which leads to a contradiction.

If 𝜈𝑙 /∈ 𝒩𝑟, then 𝐸𝜈𝑙 ⊂ 𝒮𝐵, thus 𝐸𝜈𝑙 ⊂ 𝒮𝐵, so 𝑝, 𝑞 ∈ 𝒮𝐵. The proof of Theorem 3

under this case requires a technical lemma (Lemma 14). Let us define

∀ 𝑘 ∈ {1, . . . , 𝑁}, ℛ𝑘 =
{︀
𝑟 ∈ 𝐸𝜈𝑘 | 𝑑*𝑟𝑘 /∈ {0, 1}

}︀
and ℛ =

⋃︁
𝑘∈{1,...,𝑁}

ℛ𝑘.

By definition we have 𝑝, 𝑞 ∈ ℛ𝑙 so |ℛ| > 0. We also define

∀ 𝑟 ∈ ℛ, 𝒦𝑟 =
{︀
𝑘 ∈ 𝐾𝑟 | 𝑟 ∈ ℛ𝑘

}︀
and 𝒦 =

⋃︁
𝑟∈ℛ

𝒦𝑟.

such that 𝑙 ∈ 𝒦𝑝 ∩ 𝒦𝑞 and 𝑙 ∈ 𝒦. By definition if 𝑟 ∈ ℛ𝑘, then 𝑘 ∈ 𝒦𝑟.

Definition 2. We say that 𝑟 ∈ ℛ is a stack linked through fractional solutions to

stack 𝑝 at stage 𝑙 if 𝑟 = 𝑝 or if there exists 𝐽 ∈ {2, . . . , |𝒦|} and two sequences

(𝑘1, . . . , 𝑘𝐽) ∈ 𝒦 and (𝑟1, . . . , 𝑟𝐽) ∈ ℛ such that:

(i) 𝑘1 ̸= . . . ̸= 𝑘𝐽 and 𝑟1 ̸= . . . ̸= 𝑟𝐽 .

227

(ii) 𝑘1 = 𝑙 and 𝑟1 = 𝑝.

(iii) ∀ 𝑗 ∈ {1, . . . , 𝐽 − 1}, 𝑟𝑗 ∈ ℛ𝑘𝑗 ∩ℛ𝑘𝑗+1
, i.e., 𝑑*𝑟𝑗𝑘𝑗 /∈ {0, 1} and 𝑑*𝑟𝑗𝑘𝑗+1

/∈ {0, 1}.

(iv) 𝑟𝐽 = 𝑟 and 𝑟 ∈ ℛ𝑘𝐽 , i.e., 𝑑*𝑟𝑘𝐽 /∈ {0, 1}.

We denote by 𝒯𝑝,𝑙 the set of stacks linked through fractional solutions to stack 𝑝 at

stage 𝑙.

We now state the technical lemma to identify two sub-cases:

Lemma 14. Let 𝒯𝑝,𝑙 the set of stacks linked through fractional solutions to stack 𝑝 at

stage 𝑙, then at least one of the two following statements is true:

(*) 𝑞 ∈ 𝒯𝑝,𝑙.

(**) there exists 𝑟 ∈ 𝒯𝑝,𝑙 such that
∑︁
𝑘∈𝐾𝑟

𝑑*𝑟𝑘 /∈ N.

Before proving Lemma 14, we assume this lemma holds and concludes the proof

of Theorem 3. Therefore, using Lemma 14, we consider two sub-cases:

If Condition (*) holds, since 𝑝 ̸= 𝑞, then we know there exists 𝐽 ∈ {2, . . . , |𝒦|}
and two sequences (𝑘1, . . . , 𝑘𝐽) ∈ 𝒦 and (𝑟1, . . . , 𝑟𝐽) ∈ ℛ such that: (i) 𝑘1 ̸= . . . ̸= 𝑘𝐽

and 𝑟1 ̸= . . . ̸= 𝑟𝐽 , (ii) 𝑘1 = 𝑙 and 𝑟1 = 𝑝, (iii) ∀ 𝑗 ∈ {1, . . . , 𝐽 − 1}, 𝑟𝑗 ∈ ℛ𝑘𝑗 ∩ℛ𝑘𝑗+1
,

and (iv) 𝑟𝐽 = 𝑞 and 𝑞 ∈ ℛ𝑘𝐽 . Now consider

𝜖 = min

{︂
min

𝑗∈{1,...,𝐽−1}

{︁
𝑑*𝑟𝑗𝑘𝑗 , 1− 𝑑*𝑟𝑗𝑘𝑗 , 𝑑*𝑟𝑗𝑘𝑗+1

, 1− 𝑑*𝑟𝑗𝑘𝑗+1

}︁
, 𝑑*𝑞𝑘𝐽 , 1− 𝑑*𝑞𝑘𝐽 , 𝑑*𝑞𝑙, 1− 𝑑*𝑞𝑙

}︂
> 0,

and 𝐷1 = (𝑑1, 𝑓 *) and 𝐷2 = (𝑑2, 𝑓 *) such that

∀ 𝑗 ∈ {1, . . . , 𝐽 − 1},

⎧⎨⎩ 𝑑1𝑟𝑗𝑘𝑗 = 𝑑*𝑟𝑗𝑘𝑗 − 𝜖

𝑑1𝑟𝑗𝑘𝑗+1
= 𝑑*𝑟𝑗𝑘𝑗+1

+ 𝜖

∀ 𝑗 ∈ {1, . . . , 𝐽 − 1},

⎧⎨⎩ 𝑑2𝑟𝑗𝑘𝑗 = 𝑑*𝑟𝑗𝑘𝑗 + 𝜖

𝑑2𝑟𝑗𝑘𝑗+1
= 𝑑*𝑟𝑗𝑘𝑗+1

− 𝜖

𝑑1𝑞𝑘𝐽 = 𝑑*𝑞𝑘𝐽 − 𝜖 𝑑2𝑞𝑘𝐽 = 𝑑*𝑞𝑘𝐽 + 𝜖

𝑑1𝑞𝑙 = 𝑑*𝑞𝑙 + 𝜖 𝑑2𝑞𝑙 = 𝑑*𝑞𝑙 − 𝜖

228

otherwise 𝑑1𝑟𝑘 = 𝑑2𝑟𝑘 = 𝑑*𝑟𝑘. We illustrate the changes made in 𝐷1 and 𝐷2 compared

to 𝐷* in Figure C-1. Let us show that 𝐷1, 𝐷2 ∈ ℒ(𝑤). First, by definition of 𝜖,

...

l = k1

k2

k3

r1 = p

r2

r3

� ✏

� ✏

� ✏

� ✏

� ✏

+ ✏

+ ✏

+ ✏

+ ✏

kJ-1

kJ

rJ-1

rJ = q

0

0

0

0

0

(a) Illustration of 𝐷1.

...

l = k1

k2

k3

r1 = p

r2

r3

� ✏

� ✏

� ✏

� ✏

+ ✏

+ ✏

+ ✏

+ ✏

kJ-1

kJ

rJ-1

rJ = q+ ✏

0

0

0

0

0

(b) Illustration of 𝐷2.

Figure C-1: Illustration of two feasible points 𝐷1 and 𝐷2 such that their average is
an extreme point 𝐷* in the case where Condition (*) holds. Numbers on the right
show the change of balance for nodes (𝑟𝑗)𝑗∈{1,...,𝐽}.

0 6 𝑑1, 𝑑2 6 1. Moreover, let us prove that ∀𝑘 ∈ {1, . . . , 𝑁},
∑︁
𝑟∈𝐸𝜈𝑘

𝑑1𝑟𝑘 =
∑︁
𝑟∈𝐸𝜈𝑘

𝑑2𝑟𝑘 =∑︁
𝑟∈𝐸𝜈𝑘

𝑑*𝑟𝑘. Indeed, let 𝑘 ∈ {1, . . . , 𝑁}

∙ If ∀𝑗 ∈ {2, . . . , 𝐽}, 𝑘 ̸= 𝑘𝑗 and 𝑘 ̸= 𝑙, then ∀ 𝑟 ∈ 𝐸𝜈𝑘 , 𝑑1𝑟𝑘 = 𝑑2𝑟𝑘 = 𝑑*𝑟𝑘, thus

∑︁
𝑟∈𝐸𝜈𝑘

𝑑1𝑟𝑘 =
∑︁
𝑟∈𝐸𝜈𝑘

𝑑2𝑟𝑘 =
∑︁
𝑟∈𝐸𝜈𝑘

𝑑*𝑟𝑘.

∙ If ∃𝑗 ∈ {2, . . . , 𝐽}, 𝑘 = 𝑘𝑗, then we have

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑑1𝑟𝑘𝑗 =
∑︁

𝑟∈𝐸𝜈𝑘𝑗

𝑟 ̸=𝑟𝑗 ,𝑟𝑗−1

𝑑1𝑟𝑘𝑗 + 𝑑1𝑟𝑗𝑘𝑗 + 𝑑1𝑟𝑗−1𝑘𝑗
=

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑟 ̸=𝑟𝑗 ,𝑟𝑗−1

𝑑*𝑟𝑘𝑗 + 𝑑*𝑟𝑗𝑘𝑗 − 𝜖+ 𝑑*𝑟𝑗−1𝑘𝑗
+ 𝜖 =

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑑*𝑟𝑘𝑗 ,

229

and

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑑2𝑟𝑘𝑗 =
∑︁

𝑟∈𝐸𝜈𝑘𝑗

𝑟 ̸=𝑟𝑗 ,𝑟𝑗−1

𝑑2𝑟𝑘𝑗 + 𝑑2𝑟𝑗𝑘𝑗 + 𝑑2𝑟𝑗−1𝑘𝑗
=

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑟 ̸=𝑟𝑗 ,𝑟𝑗−1

𝑑*𝑟𝑘𝑗 + 𝑑*𝑟𝑗𝑘𝑗 + 𝜖+ 𝑑*𝑟𝑗−1𝑘𝑗
− 𝜖 =

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑑*𝑟𝑘𝑗 .

∙ If 𝑘 = 𝑙, then we have

∑︁
𝑟∈𝐸𝜈𝑙

𝑑1𝑟𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑1𝑟𝑙 + 𝑑1𝑝𝑙 + 𝑑1𝑞𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑*𝑟𝑙 + 𝑑*𝑝𝑙 − 𝜖+ 𝑑*𝑞𝑙 + 𝜖 =
∑︁
𝑟∈𝐸𝜈𝑙

𝑑*𝑟𝑙,

and

∑︁
𝑟∈𝐸𝜈𝑙

𝑑2𝑟𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑2𝑟𝑙 + 𝑑2𝑝𝑙 + 𝑑2𝑞𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑*𝑟𝑙 + 𝑑*𝑝𝑙 + 𝜖+ 𝑑*𝑞𝑙 − 𝜖 =
∑︁
𝑟∈𝐸𝜈𝑙

𝑑*𝑟𝑙.

Moreover, let us now show that ∀ 𝑟 ∈ 𝒮𝐵,
∑︁
𝑘∈𝐾𝑟

𝑑1𝑟𝑘 =
∑︁
𝑘∈𝐾𝑟

𝑑2𝑟𝑘 =
∑︁
𝑘∈𝐾𝑟

𝑑*𝑟𝑘. Indeed, let

𝑟 ∈ 𝒮𝐵,

∙ If ∀𝑗 ∈ {1, . . . , 𝐽−1}, 𝑟 ̸= 𝑟𝑗 and 𝑟 ̸= 𝑞, then we have ∀ 𝑘 ∈ 𝐾𝑟, 𝑑1𝑟𝑘 = 𝑑2𝑟𝑘 = 𝑑*𝑟𝑘,

thus ∑︁
𝑘∈𝐾𝑟

𝑑1𝑟𝑘 =
∑︁
𝑘∈𝐾𝑟

𝑑2𝑟𝑘 =
∑︁
𝑘∈𝐾𝑟

𝑑*𝑟𝑘.

∙ If ∃𝑗 ∈ {1, . . . , 𝐽 − 1}, 𝑟 = 𝑟𝑗, then we have

∑︁
𝑘∈𝐾𝑟𝑗

𝑑1𝑟𝑗𝑘 =
∑︁

𝑘∈𝐾𝑟𝑗

𝑘 ̸=𝑘𝑗 ,𝑘𝑗+1

𝑑1𝑟𝑗𝑘 + 𝑑1𝑟𝑗𝑘𝑗 + 𝑑1𝑟𝑗𝑘𝑗+1
=

∑︁
𝑘∈𝐾𝑟𝑗

𝑘 ̸=𝑘𝑗 ,𝑘𝑗+1

𝑑*𝑟𝑗𝑘 + 𝑑*𝑟𝑗𝑘𝑗 − 𝜖+ 𝑑*𝑟𝑗𝑘𝑗+1
+ 𝜖 =

∑︁
𝑘∈𝐾𝑟𝑗

𝑑*𝑟𝑗𝑘,

and

∑︁
𝑘∈𝐾𝑟𝑗

𝑑2𝑟𝑗𝑘 =
∑︁

𝑘∈𝐾𝑟𝑗

𝑘 ̸=𝑘𝑗 ,𝑘𝑗+1

𝑑2𝑟𝑗𝑘 + 𝑑2𝑟𝑗𝑘𝑗 + 𝑑2𝑟𝑗𝑘𝑗+1
=

∑︁
𝑘∈𝐾𝑟𝑗

𝑘 ̸=𝑘𝑗 ,𝑘𝑗+1

𝑑*𝑟𝑗𝑘 + 𝑑*𝑟𝑗𝑘𝑗 + 𝜖+ 𝑑*𝑟𝑗𝑘𝑗+1
− 𝜖 =

∑︁
𝑘∈𝐾𝑟𝑗

𝑑*𝑟𝑗𝑘.

230

∙ If 𝑟 = 𝑞, then we have

∑︁
𝑘∈𝐾𝑞

𝑑1𝑞𝑘 =
∑︁
𝑘∈𝐾𝑞

𝑘 ̸=𝑘𝐽 ,𝑙

𝑑1𝑞𝑘 + 𝑑1𝑞𝑘𝐽 + 𝑑1𝑞𝑙 =
∑︁
𝑘∈𝐾𝑞

𝑘 ̸=𝑘𝐽 ,𝑙

𝑑*𝑞𝑘 + 𝑑*𝑞𝑘𝐽 − 𝜖+ 𝑑*𝑞𝑙 + 𝜖 =
∑︁
𝑘∈𝐾𝑞

𝑑*𝑞𝑘,

and

∑︁
𝑘∈𝐾𝑞

𝑑2𝑞𝑘 =
∑︁
𝑘∈𝐾𝑞

𝑘 ̸=𝑘𝐽 ,𝑙

𝑑2𝑞𝑘 + 𝑑2𝑞𝑘𝐽 + 𝑑2𝑞𝑙 =
∑︁
𝑘∈𝐾𝑞

𝑘 ̸=𝑘𝐽 ,𝑙

𝑑*𝑞𝑘 + 𝑑*𝑞𝑘𝐽 + 𝜖+ 𝑑*𝑞𝑙 − 𝜖 =
∑︁
𝑘∈𝐾𝑞

𝑑*𝑞𝑘,

Therefore, since only these sums involve the variable 𝑑 in the constraints of ℒ(𝑤),
and that 𝐷* ∈ ℒ(𝑤), then 𝐷1, 𝐷2 ∈ ℒ(𝑤). However, it is clear that 𝑑* = 1

2
(𝑑1 + 𝑑2)

so 𝐷* = 1
2
(𝐷1 +𝐷2), and since 𝜖 > 0, 𝐷1 ̸= 𝐷2 ̸= 𝐷*, In conclusion, 𝐷* is not an

extreme point which leads to a contradiction.

If Condition (*) does not hold but Condition (**) does, then there exists

𝑠 ∈ 𝒯𝑝,𝑙 such that
∑︁
𝑘∈𝐾𝑠

𝑑*𝑠𝑘 /∈ N. Since (𝑑*, 𝑓 *) ∈ ℒ(𝑤), we have

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}

𝑧𝑓 *
𝑠𝑧 =

∼
𝑧𝑠 +

∑︁
𝑘∈𝐾𝑠

𝑑*𝑠𝑘 /∈ N.

This implies that, if we consider

𝑧𝑠 = max
{︁
𝑧 ∈ {∼𝑧𝑠, . . . , 𝑍} | 𝑓 *

𝑠𝑧 > 0
}︁

and 𝑧𝑠 = min
{︁
𝑧 ∈ {∼𝑧𝑠, . . . , 𝑍} | 𝑓 *

𝑠𝑧 > 0
}︁
,

then we have

𝑧𝑠 > 𝑧𝑠,

and consequently

𝑓 *
𝑠𝑧𝑠 /∈ {0, 1} and 𝑓 *

𝑠𝑧𝑠 /∈ {0, 1}.

Moreover, since 𝑠 ∈ 𝒯𝑝,𝑙, then there exists 𝐽 ∈ {2, . . . , |𝒦|} and two sequences

(𝑘1, . . . , 𝑘𝐽) ∈ 𝒦 and (𝑠1, . . . , 𝑠𝐽) ∈ ℛ such that: (i) 𝑘1 ̸= . . . ̸= 𝑘𝐽 and 𝑠1 ̸= . . . ̸= 𝑠𝐽 ,

231

(ii) 𝑘1 = 𝑙 and 𝑠1 = 𝑝, (iii) ∀ 𝑗 ∈ {1, . . . , 𝐽 − 1}, 𝑠𝑗 ∈ ℛ𝑘𝑗 ∩ ℛ𝑘𝑗+1
, and (iv) 𝑠𝐽 = 𝑠

and 𝑠 ∈ ℛ𝑘𝐽 .

Similarly, we can use Lemma 14 with 𝑞. Since Condition (*) does not hold, then

𝑞 /∈ 𝒯𝑝,𝑙, and thus 𝑝 ̸= 𝒯𝑞,𝑙. Therefore, we know that there exists 𝑡 ∈ 𝒯𝑞,𝑙 such that∑︁
𝑘∈𝐾𝑡

𝑑*𝑡𝑘 /∈ N. With the same argument, we know that if

𝑧𝑡 = max
{︁
𝑧 ∈ {∼𝑧𝑡, . . . , 𝑍} | 𝑓 *

𝑡𝑧 > 0
}︁

and 𝑧𝑡 = min
{︁
𝑧 ∈ {∼𝑧𝑡, . . . , 𝑍} | 𝑓 *

𝑡𝑧 > 0
}︁
,

then

𝑧𝑡 > 𝑧𝑡, 𝑓
*
𝑡𝑧𝑡 /∈ {0, 1} and 𝑓 *

𝑡𝑧𝑡 /∈ {0, 1}.

In addition, there exists 𝐼 ∈ {2, . . . , |𝒦|} and two sequences (𝑙1, . . . , 𝑙𝐼) ∈ 𝒦 and

(𝑡1, . . . , 𝑡𝐼) ∈ ℛ such that: (i) 𝑙1 ̸= . . . ̸= 𝑙𝐼 and 𝑡1 ̸= . . . ̸= 𝑡𝐼 , (ii) 𝑙1 = 𝑙 and 𝑡1 = 𝑞,

(iii) ∀ 𝑖 ∈ {1, . . . , 𝐼 − 1}, 𝑡𝑖 ∈ ℛ𝑙𝑖 ∩ℛ𝑙𝑖+1
, and (iv) 𝑡𝐼 = 𝑡 and 𝑡 ∈ ℛ𝑙𝐼 .

Note that 𝑞 /∈ 𝒯𝑝,𝑙 implies that ∀(𝑗, 𝑖) ∈ {1, . . . , 𝐽}×{1, . . . , 𝐼}, 𝑠𝑗 ̸= 𝑡𝑖 and 𝑘𝑗 ̸= 𝑙𝑖.

We now consider

𝜖 = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑗∈{1,...,𝐽−1}

{︁
𝑑*𝑠𝑗𝑘𝑗 , 1− 𝑑*𝑠𝑗𝑘𝑗 , 𝑑*𝑠𝑗𝑘𝑗+1

, 1− 𝑑*𝑠𝑗𝑘𝑗+1

}︁
, 𝑑*𝑠𝐽𝑘𝐽 , 1− 𝑑*𝑠𝐽𝑘𝐽 ,

min
𝑖∈{1,...,𝐼−1}

{︁
𝑑*𝑡𝑖𝑙𝑖 , 1− 𝑑*𝑡𝑖𝑙𝑖 , 𝑑*𝑡𝑖𝑙𝑖+1

, 1− 𝑑*𝑡𝑖𝑙𝑖+1

}︁
, 𝑑*𝑡𝐼 𝑙𝐼 , 1− 𝑑*𝑡𝐼 𝑙𝐼 ,(︀

𝑧𝑠 − 𝑧𝑠
)︀
𝑓 *
𝑠𝑧𝑠 ,

(︀
𝑧𝑠 − 𝑧𝑠

)︀ (︁
1− 𝑓 *

𝑠𝑧𝑠

)︁
,
(︀
𝑧𝑠 − 𝑧𝑠

)︀
𝑓 *
𝑠𝑧𝑠 ,

(︀
𝑧𝑠 − 𝑧𝑠

)︀ (︀
1− 𝑓 *

𝑠𝑧𝑠

)︀
,(︀

𝑧𝑡 − 𝑧𝑡
)︀
𝑓 *
𝑡𝑧𝑡 ,

(︀
𝑧𝑡 − 𝑧𝑡

)︀ (︁
1− 𝑓 *

𝑡𝑧𝑡

)︁
,
(︀
𝑧𝑡 − 𝑧𝑡

)︀
𝑓 *
𝑡𝑧𝑡 ,

(︀
𝑧𝑡 − 𝑧𝑡

)︀ (︀
1− 𝑓 *

𝑡𝑧𝑡

)︀
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
> 0.

232

and 𝐷1 = (𝑑1, 𝑓 1) and 𝐷2 = (𝑑2, 𝑓 2) such that

∀ 𝑗 ∈ {1, . . . , 𝐽 − 1},

⎧⎨⎩ 𝑑1𝑠𝑗𝑘𝑗 = 𝑑*𝑠𝑗𝑘𝑗 − 𝜖

𝑑1𝑠𝑗𝑘𝑗+1
= 𝑑*𝑠𝑗𝑘𝑗+1

+ 𝜖

∀ 𝑗 ∈ {1, . . . , 𝐽 − 1},

⎧⎨⎩ 𝑑2𝑠𝑗𝑘𝑗 = 𝑑*𝑠𝑗𝑘𝑗 + 𝜖

𝑑2𝑠𝑗𝑘𝑗+1
= 𝑑*𝑠𝑗𝑘𝑗+1

− 𝜖

∀ 𝑖 ∈ {1, . . . , 𝐼 − 1},

⎧⎨⎩ 𝑑1𝑡𝑖𝑙𝑖 = 𝑑*𝑡𝑖𝑙𝑖 + 𝜖

𝑑1𝑡𝑖𝑙𝑖+1
= 𝑑*𝑡𝑖𝑙𝑖+1

− 𝜖
∀ 𝑖 ∈ {1, . . . , 𝐼 − 1},

⎧⎨⎩ 𝑑2𝑡𝑖𝑙𝑖 = 𝑑*𝑡𝑖𝑙𝑖 − 𝜖
𝑑2𝑡𝑖𝑙𝑖+1

= 𝑑*𝑡𝑖𝑙𝑖+1
+ 𝜖

𝑑1𝑠𝑘𝐽 = 𝑑*𝑠𝑘𝐽 − 𝜖 𝑑2𝑠𝑘𝐽 = 𝑑*𝑠𝑘𝐽 + 𝜖

𝑑1𝑡𝑙𝐼 = 𝑑*𝑡𝑙𝐼 + 𝜖 𝑑2𝑡𝑙𝐼 = 𝑑*𝑡𝑙𝐼 − 𝜖

𝑓 1
𝑠𝑧𝑠 = 𝑓 *

𝑠𝑧𝑠 +
𝜖

𝑧𝑠 − 𝑧𝑠
𝑓 2
𝑠𝑧𝑠 = 𝑓 *

𝑠𝑧𝑠 −
𝜖

𝑧𝑠 − 𝑧𝑠
𝑓 1
𝑠𝑧𝑠 = 𝑓 *

𝑠𝑧𝑠 −
𝜖

𝑧𝑠 − 𝑧𝑠
𝑓 2
𝑠𝑧𝑠 = 𝑓 *

𝑠𝑧𝑠 +
𝜖

𝑧𝑠 − 𝑧𝑠
𝑓 1
𝑡𝑧𝑡 = 𝑓 *

𝑡𝑧𝑡 −
𝜖

𝑧𝑡 − 𝑧𝑡
𝑓 2
𝑡𝑧𝑡 = 𝑓 *

𝑡𝑧𝑡 +
𝜖

𝑧𝑡 − 𝑧𝑡
𝑓 1
𝑡𝑧𝑡 = 𝑓 *

𝑡𝑧𝑡 +
𝜖

𝑧𝑡 − 𝑧𝑡
𝑓 2
𝑡𝑧𝑡 = 𝑓 *

𝑡𝑧𝑡 −
𝜖

𝑧𝑡 − 𝑧𝑡

otherwise 𝑑1𝑟𝑘 = 𝑑2𝑟𝑘 = 𝑑*𝑟𝑘 and 𝑓 1
𝑟𝑧 = 𝑓 2

𝑟𝑧 = 𝑓 *
𝑟𝑧. We illustrate the changes made in 𝐷1

and 𝐷2 compared to 𝐷* in Figure C-2.

Let us show that 𝐷1, 𝐷2 ∈ ℒ(𝑤). First, by definition of 𝜖, 0 6 𝑑1, 𝑑2 6 1 and

0 6 𝑓 1, 𝑓 2 6 1. Moreover, let us prove that ∀𝑘 ∈ {1, . . . , 𝑁},
∑︁
𝑟∈𝐸𝜈𝑘

𝑑1𝑟𝑘 =
∑︁
𝑟∈𝐸𝜈𝑘

𝑑2𝑟𝑘 =∑︁
𝑟∈𝐸𝜈𝑘

𝑑*𝑟𝑘. Indeed, let 𝑘 ∈ {1, . . . , 𝑁}

∙ If ∀𝑗 ∈ {2, . . . , 𝐽}, 𝑘 ̸= 𝑘𝑗 and ∀𝑖 ∈ {2, . . . , 𝐼}, 𝑘 ̸= 𝑙𝑖 and 𝑘 ̸= 𝑙, then ∀ 𝑟 ∈ 𝐸𝜈𝑘 ,

𝑑1𝑟𝑘 = 𝑑2𝑟𝑘 = 𝑑*𝑟𝑘, thus

∑︁
𝑟∈𝐸𝜈𝑘

𝑑1𝑟𝑘 =
∑︁
𝑟∈𝐸𝜈𝑘

𝑑2𝑟𝑘 =
∑︁
𝑟∈𝐸𝜈𝑘

𝑑*𝑟𝑘.

∙ If ∃𝑗 ∈ {2, . . . , 𝐽}, 𝑘 = 𝑘𝑗, then we have

233

...

...

+ ✏

+ ✏

+ ✏

+ ✏
+ ✏

� ✏

� ✏

� ✏

� ✏

� ✏

k2

kJ

lI

tI-1

sJ-1

l = k1 = l1

l2

0

0

0

0

s1 = p

t1 = q

tI = t

sJ = s

(a) Illustration of 𝐷1.

...

...

+ ✏

+ ✏

+ ✏

+ ✏

+ ✏

� ✏

� ✏

� ✏

� ✏
� ✏

k2

kJ

lI

tI-1

sJ-1

l = k1 = l1

l2

0

0

0

0

sJ = s

s1 = p

t1 = q

tI = t

(b) Illustration of 𝐷2.

Figure C-2: Illustration of two feasible points 𝐷1 and 𝐷2 such that their average is
an extreme point 𝐷* in the case where Condition (*) does not hold but Condition
(**) does. Numbers on the right show the change of balance for nodes (𝑠𝑗)𝑗∈{1,...,𝐽}
and (𝑡𝑖)𝑖∈{1,...,𝐼}.

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑑1𝑟𝑘𝑗 =
∑︁

𝑟∈𝐸𝜈𝑘𝑗

𝑟 ̸=𝑟𝑗 ,𝑟𝑗−1

𝑑1𝑟𝑘𝑗+𝑑
1
𝑟𝑗𝑘𝑗

+𝑑1𝑟𝑗−1𝑘𝑗
=

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑟 ̸=𝑟𝑗 ,𝑟𝑗−1

𝑑*𝑟𝑘𝑗+𝑑
*
𝑟𝑗𝑘𝑗
−𝜖+𝑑*𝑟𝑗−1𝑘𝑗

+𝜖 =
∑︁

𝑟∈𝐸𝜈𝑘𝑗

𝑑*𝑟𝑘𝑗 ,

and

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑑2𝑟𝑘𝑗 =
∑︁

𝑟∈𝐸𝜈𝑘𝑗

𝑟 ̸=𝑟𝑗 ,𝑟𝑗−1

𝑑2𝑟𝑘𝑗+𝑑
2
𝑟𝑗𝑘𝑗

+𝑑2𝑟𝑗−1𝑘𝑗
=

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑟 ̸=𝑟𝑗 ,𝑟𝑗−1

𝑑*𝑟𝑘𝑗+𝑑
*
𝑟𝑗𝑘𝑗

+𝜖+𝑑*𝑟𝑗−1𝑘𝑗
−𝜖 =

∑︁
𝑟∈𝐸𝜈𝑘𝑗

𝑑*𝑟𝑘𝑗 .

∙ If ∃𝑖 ∈ {2, . . . , 𝐼}, 𝑘 = 𝑙𝑖, then we have

∑︁
𝑟∈𝐸𝜈𝑙𝑖

𝑑1𝑟𝑙𝑖 =
∑︁

𝑟∈𝐸𝜈𝑙𝑖
𝑟 ̸=𝑡𝑖,𝑡𝑖−1

𝑑1𝑟𝑙𝑖+𝑑
1
𝑡𝑖𝑙𝑖

+𝑑1𝑡𝑖−1𝑙𝑖
=

∑︁
𝑟∈𝐸𝜈𝑙𝑖

𝑟 ̸=𝑡𝑖,𝑡𝑖−1

𝑑*𝑟𝑙𝑖+𝑑
*
𝑡𝑖𝑙𝑖

+𝜖+𝑑*𝑡𝑖−1𝑙𝑖
−𝜖 =

∑︁
𝑟∈𝐸𝜈𝑙𝑖

𝑑*𝑟𝑙𝑖 ,

234

and

∑︁
𝑟∈𝐸𝜈𝑙𝑖

𝑑2𝑟𝑙𝑖 =
∑︁

𝑟∈𝐸𝜈𝑙𝑖
𝑟 ̸=𝑡𝑖,𝑡𝑖−1

𝑑2𝑟𝑙𝑖+𝑑
2
𝑡𝑖𝑙𝑖

+𝑑2𝑡𝑖−1𝑙𝑖
=

∑︁
𝑟∈𝐸𝜈𝑙𝑖

𝑟 ̸=𝑡𝑖,𝑡𝑖−1

𝑑*𝑟𝑙𝑖+𝑑
*
𝑡𝑖𝑙𝑖
−𝜖+𝑑*𝑡𝑖−1𝑙𝑖

+𝜖 =
∑︁

𝑟∈𝐸𝜈𝑙𝑖

𝑑*𝑟𝑙𝑖 ,

∙ If 𝑘 = 𝑙 = 𝑘1 = 𝑙1, then we have

∑︁
𝑟∈𝐸𝜈𝑙

𝑑1𝑟𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑1𝑟𝑙 + 𝑑1𝑝𝑙 + 𝑑1𝑞𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑*𝑟𝑙 + 𝑑*𝑝𝑙 − 𝜖+ 𝑑*𝑞𝑙 + 𝜖 =
∑︁
𝑟∈𝐸𝜈𝑙

𝑑*𝑟𝑙,

and

∑︁
𝑟∈𝐸𝜈𝑙

𝑑2𝑟𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑2𝑟𝑙 + 𝑑2𝑝𝑙 + 𝑑2𝑞𝑙 =
∑︁
𝑟∈𝐸𝜈𝑙
𝑟 ̸=𝑝,𝑞

𝑑*𝑟𝑙 + 𝑑*𝑝𝑙 + 𝜖+ 𝑑*𝑞𝑙 − 𝜖 =
∑︁
𝑟∈𝐸𝜈𝑙

𝑑*𝑟𝑙.

Moreover, let 𝑟 ∈ 𝒮𝐵, we check that (𝑑1, 𝑓 1) and (𝑑2, 𝑓 2) verify the two types of

constraints of ℒ(𝑤) associated with 𝑟:

∙ If 𝑟 ̸= 𝑠, 𝑡, then ∀𝑧 ∈ {∼𝑧𝑟, . . . , 𝑍}, 𝑓 1
𝑟𝑧 = 𝑓 2

𝑟𝑧 = 𝑓 *
𝑟𝑧. In addition, we prove that

∑︁
𝑘∈𝐾𝑟

𝑑1𝑟𝑘 =
∑︁
𝑘∈𝐾𝑟

𝑑2𝑟𝑘 =
∑︁
𝑘∈𝐾𝑟

𝑑*𝑟𝑘,

which by feasibility of 𝐷* would prove that the two constraints associated with

𝑟 are satisfied.

◇ If ∀𝑗 ∈ {1, . . . , 𝐽−1}, 𝑟 ̸= 𝑟𝑗 and ∀𝑖 ∈ {1, . . . , 𝐼−1}, 𝑟 ̸= 𝑡𝑖, then ∀ 𝑘 ∈ 𝐾𝑟,

𝑑1𝑟𝑘 = 𝑑2𝑟𝑘 = 𝑑*𝑟𝑘, thus

∑︁
𝑘∈𝐾𝑟

𝑑1𝑟𝑘 =
∑︁
𝑘∈𝐾𝑟

𝑑2𝑟𝑘 =
∑︁
𝑘∈𝐾𝑟

𝑑*𝑟𝑘.

◇ If ∃𝑗 ∈ {1, . . . , 𝐽 − 1}, 𝑟 = 𝑠𝑗, then we have

235

∑︁
𝑘∈𝐾𝑠𝑗

𝑑1𝑠𝑗𝑘 =
∑︁

𝑘∈𝐾𝑠𝑗

𝑘 ̸=𝑘𝑗 ,𝑘𝑗+1

𝑑1𝑠𝑗𝑘+𝑑
1
𝑠𝑗𝑘𝑗

+𝑑1𝑠𝑗𝑘𝑗+1
=

∑︁
𝑘∈𝐾𝑠𝑗

𝑘 ̸=𝑘𝑗 ,𝑘𝑗+1

𝑑*𝑠𝑗𝑘+𝑑
*
𝑠𝑗𝑘𝑗
−𝜖+𝑑*𝑠𝑗𝑘𝑗+1

+𝜖 =
∑︁

𝑘∈𝐾𝑠𝑗

𝑑*𝑠𝑗𝑘,

and

∑︁
𝑘∈𝐾𝑠𝑗

𝑑2𝑠𝑗𝑘 =
∑︁

𝑘∈𝐾𝑠𝑗

𝑘 ̸=𝑘𝑗 ,𝑘𝑗+1

𝑑2𝑠𝑗𝑘+𝑑
2
𝑠𝑗𝑘𝑗

+𝑑2𝑠𝑗𝑘𝑗+1
=

∑︁
𝑘∈𝐾𝑠𝑗

𝑘 ̸=𝑘𝑗 ,𝑘𝑗+1

𝑑*𝑠𝑗𝑘+𝑑
*
𝑠𝑗𝑘𝑗

+𝜖+𝑑*𝑠𝑗𝑘𝑗+1
−𝜖 =

∑︁
𝑘∈𝐾𝑠𝑗

𝑑*𝑠𝑗𝑘.

◇ If ∃𝑖 ∈ {1, . . . , 𝐼 − 1}, 𝑟 = 𝑡𝑖, then we have

∑︁
𝑘∈𝐾𝑡𝑖

𝑑1𝑡𝑖𝑘 =
∑︁
𝑘∈𝐾𝑡𝑖

𝑘 ̸=𝑙𝑖,𝑙𝑖+1

𝑑1𝑡𝑖𝑘 + 𝑑1𝑡𝑖𝑙𝑖 + 𝑑1𝑡𝑖𝑙𝑖+1
=

∑︁
𝑘∈𝐾𝑡𝑖

𝑘 ̸=𝑙𝑖,𝑙𝑖+1

𝑑*𝑡𝑖𝑘 + 𝑑*𝑡𝑖𝑙𝑖 + 𝜖+ 𝑑*𝑡𝑖𝑙𝑖+1
− 𝜖 =

∑︁
𝑘∈𝐾𝑡𝑖

𝑑*𝑡𝑖𝑘,

and

∑︁
𝑘∈𝐾𝑡𝑖

𝑑2𝑡𝑖𝑘 =
∑︁
𝑘∈𝐾𝑡𝑖

𝑘 ̸=𝑙𝑖,𝑙𝑖+1

𝑑2𝑡𝑖𝑘 + 𝑑2𝑡𝑖𝑙𝑖 + 𝑑2𝑡𝑖𝑙𝑖+1
=

∑︁
𝑘∈𝐾𝑡𝑖

𝑘 ̸=𝑙𝑖,𝑙𝑖+1

𝑑*𝑡𝑖𝑘 + 𝑑*𝑡𝑖𝑙𝑖 − 𝜖+ 𝑑*𝑡𝑖𝑙𝑖+1
+ 𝜖 =

∑︁
𝑘∈𝐾𝑡𝑖

𝑑*𝑡𝑖𝑘.

∙ If 𝑟 = 𝑠 or 𝑟 = 𝑡, (both cases are similar, we only treat the case of 𝑟 = 𝑠) we

have

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}

𝑓 1
𝑠𝑧 =

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}
𝑧 ̸=𝑧𝑠,𝑧𝑠

𝑓 1
𝑠𝑧 + 𝑓 1

𝑠𝑧𝑠 + 𝑓 1
𝑠𝑧𝑠

=
∑︁

𝑧∈{∼
𝑧𝑠,...,𝑍}

𝑧 ̸=𝑧𝑠,𝑧𝑠

𝑓 *
𝑠𝑧 + 𝑓 *

𝑠𝑧𝑠 +
𝜖

𝑧𝑠 − 𝑧𝑠
+ 𝑓 *

𝑠𝑧𝑠 −
𝜖

𝑧𝑠 − 𝑧𝑠

=
∑︁

𝑧∈{∼
𝑧𝑠,...,𝑍}

𝑓 *
𝑠𝑧 = 1,

236

and

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}

𝑓 2
𝑠𝑧 =

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}
𝑧 ̸=𝑧𝑠,𝑧𝑠

𝑓 2
𝑠𝑧 + 𝑓 2

𝑠𝑧𝑠 + 𝑓 2
𝑠𝑧𝑠

=
∑︁

𝑧∈{∼
𝑧𝑠,...,𝑍}

𝑧 ̸=𝑧𝑠,𝑧𝑠

𝑓 *
𝑠𝑧 + 𝑓 *

𝑠𝑧𝑠 −
𝜖

𝑧𝑠 − 𝑧𝑠
+ 𝑓 *

𝑠𝑧𝑠 +
𝜖

𝑧𝑠 − 𝑧𝑠

=
∑︁

𝑧∈{∼
𝑧𝑠,...,𝑍}

𝑓 *
𝑠𝑧 = 1.

Moreover,

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}

𝑧𝑓 1
𝑠𝑧 −

∑︁
𝑘∈𝐾𝑠

𝑑1𝑠𝑘

=
∑︁

𝑧∈{∼
𝑧𝑠,...,𝑍}

𝑧 ̸=𝑧𝑠,𝑧𝑠

𝑧𝑓 1
𝑠𝑧 + 𝑧𝑠𝑓

1
𝑠𝑧𝑠 + 𝑧𝑠𝑓

1
𝑠𝑧𝑠 −

⎛⎜⎜⎝∑︁
𝑘∈𝐾𝑠
𝑘 ̸=𝑘𝐽

𝑑1𝑠𝑘 + 𝑑1𝑠𝑘𝐽

⎞⎟⎟⎠
=

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}
𝑧 ̸=𝑧𝑠,𝑧𝑠

𝑧𝑓 *
𝑠𝑧 + 𝑧𝑠𝑓

*
𝑠𝑧𝑠 +

𝜖𝑧𝑠

𝑧𝑠 − 𝑧𝑠
+ 𝑧𝑠𝑓

*
𝑠𝑧𝑠 −

𝜖𝑧𝑠
𝑧𝑠 − 𝑧𝑠

−

⎛⎜⎜⎝∑︁
𝑘∈𝐾𝑠
𝑘 ̸=𝑘𝐽

𝑑*𝑠𝑘 + 𝑑*𝑠𝑘𝐽 − 𝜖

⎞⎟⎟⎠
=

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}

𝑧𝑓 *
𝑠𝑧 −

∑︁
𝑘∈𝐾𝑠

𝑑*𝑠𝑘 =
∼
𝑧𝑠.

Similarly,

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}

𝑧𝑓 2
𝑠𝑧 −

∑︁
𝑘∈𝐾𝑠

𝑑2𝑠𝑘

=
∑︁

𝑧∈{∼
𝑧𝑠,...,𝑍}

𝑧 ̸=𝑧𝑠,𝑧𝑠

𝑧𝑓 2
𝑠𝑧 + 𝑧𝑠𝑓

2
𝑠𝑧𝑠 + 𝑧𝑠𝑓

2
𝑠𝑧𝑠 −

⎛⎜⎜⎝∑︁
𝑘∈𝐾𝑠
𝑘 ̸=𝑘𝐽

𝑑2𝑠𝑘 + 𝑑2𝑠𝑘𝐽

⎞⎟⎟⎠
=

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}
𝑧 ̸=𝑧𝑠,𝑧𝑠

𝑧𝑓 *
𝑠𝑧 + 𝑧𝑠𝑓

*
𝑠𝑧𝑠 −

𝜖𝑧𝑠

𝑧𝑠 − 𝑧𝑠
+ 𝑧𝑠𝑓

*
𝑠𝑧𝑠 +

𝜖𝑧𝑠
𝑧𝑠 − 𝑧𝑠

−

⎛⎜⎜⎝∑︁
𝑘∈𝐾𝑠
𝑘 ̸=𝑘𝐽

𝑑*𝑠𝑘 + 𝑑*𝑠𝑘𝐽 + 𝜖

⎞⎟⎟⎠
=

∑︁
𝑧∈{∼

𝑧𝑠,...,𝑍}

𝑧𝑓 *
𝑠𝑧 −

∑︁
𝑘∈𝐾𝑠

𝑑*𝑠𝑘 =
∼
𝑧𝑠.

237

In conclusion, 𝐷1, 𝐷2 ∈ ℒ(𝑤). However, it is clear that 𝑑* = 1
2
(𝑑1 + 𝑑2) and 𝑓 * =

1
2
(𝑓 1 + 𝑓 2) so 𝐷* = 1

2
(𝐷1 +𝐷2), and since 𝜖 > 0, 𝐷1 ̸= 𝐷2 ̸= 𝐷*, In conclusion,

𝐷* is not an extreme point which leads to a contradiction and concludes the proof of

Theorem 3.

238

Lemma 14. Let 𝒯𝑝,𝑙 the set of stacks linked through fractional solutions to stack 𝑝 at

stage 𝑙, then at least one of the two following statements is true:

(*) 𝑞 ∈ 𝒯𝑝,𝑙.

(**) there exists 𝑟 ∈ 𝒯𝑝,𝑙 such that
∑︁
𝑘∈𝐾𝑟

𝑑*𝑟𝑘 /∈ N.

Proof of Lemma 14. Suppose by contradiction that 𝑞 /∈ 𝒯𝑝,𝑙 and ∀ 𝑟 ∈ 𝒯𝑝,𝑙, we have

∑︁
𝑘∈𝐾𝑟

𝑑*𝑟𝑘 ∈ N.

Let 𝑟 ∈ 𝒯𝑝,𝑙 ⊂ ℛ, then by definition we have ∀ 𝑘 ∈ 𝐾𝑟∖𝒦𝑟, 𝑑*𝑟𝑘 ∈ {0, 1}. Consequently,

∑︁
𝑘∈𝒦𝑟

𝑑*𝑟𝑘 ∈ N.

By summing on all 𝑟 ∈ 𝒯𝑝,𝑙, then

if Θ =
∑︁
𝑟∈𝒯𝑝,𝑙

∑︁
𝑘∈𝒦𝑟

𝑑*𝑟𝑘, then Θ ∈ N.

Now consider

𝒦𝑝,𝑙 = {𝑘 ∈ 𝒦 |∃ 𝑟 ∈ 𝒯𝑝,𝑙 s.t. 𝑘 ∈ 𝒦𝑟 } .

Let 𝑘 ∈ 𝒦𝑝,𝑙, then we have

{𝑟 ∈ 𝒯𝑝,𝑙 |𝑘 ∈ 𝒦𝑟 } = {𝑟 ∈ 𝒯𝑝,𝑙 |𝑟 ∈ ℛ𝑘 } = ℛ𝑘 ∩ 𝒯𝑝,𝑙,

thus

Θ =
∑︁
𝑟∈𝒯𝑝,𝑙

∑︁
𝑘∈𝒦𝑟

𝑑*𝑟𝑘 =
∑︁

𝑘∈𝒦𝑝,𝑙

∑︁
𝑟∈{𝑟′∈𝒯𝑝,𝑙|𝑘∈𝒦𝑟′ }

𝑑*𝑟𝑘 =
∑︁

𝑘∈𝒦𝑝,𝑙

∑︁
𝑟∈ℛ𝑘∩𝒯𝑝,𝑙

𝑑*𝑟𝑘.

Let 𝑘 ∈ 𝒦𝑝,𝑙 ∖ {𝑙}. Let us show that

ℛ𝑘 ∩ 𝒯𝑝,𝑙 = ℛ𝑘.

239

To do so, we prove that ℛ𝑘 ⊂ 𝒯𝑝,𝑙, i.e., let 𝑠 ∈ ℛ𝑘 then we prove that 𝑠 ∈ 𝒯𝑝,𝑙. If

𝑠 = 𝑝, then 𝑠 ∈ 𝒯𝑝,𝑙. Now suppose that 𝑠 ̸= 𝑝. First, since 𝑘 ∈ 𝒦𝑝,𝑙, then by definition

there exists 𝑟 ∈ 𝒯𝑝,𝑙 such that 𝑘 ∈ 𝒦𝑟, thus 𝑟 ∈ ℛ𝑘. If 𝑟 = 𝑠, then 𝑠 ∈ 𝒯𝑝,𝑙. Otherwise,

we have 𝑟 ̸= 𝑠. In addition, since 𝑘 ̸= 𝑙, we can assume that 𝑟 ̸= 𝑝. Indeed, as

we have shown for the existence of 𝑞 in Theorem 4, if |ℛ𝑘| ≠ 0, then |ℛ𝑘| > 2.

Consequently, we take 𝑟 ∈ 𝒯𝑝,𝑙 such that 𝑟 ̸= 𝑝. So there exists 𝐽 ∈ {2, . . . , |𝒦|} and

two sequences (𝑘1, . . . , 𝑘𝐽) ∈ 𝒦 and (𝑟1, . . . , 𝑟𝐽) ∈ ℛ that verifies properties (i), (ii),

(iii) and (iv) 𝑟𝐽 = 𝑟 and 𝑟 ∈ ℛ𝑘𝐽 . We consider three sub-cases. In each cases, we

construct 𝐼 ∈ {2, . . . , |𝒦|} and two new sequences (𝑙1, . . . , 𝑙𝐼) ∈ 𝒦, (𝑠1, . . . , 𝑠𝐼) ∈ ℛ
that verifies properties (i), (ii), (iii) and (iv) 𝑠𝐼 = 𝑠 and 𝑠 ∈ ℛ𝑙𝐼 , hence getting the

result 𝑠 ∈ 𝒯𝑝,𝑙.

◇ If there exists 𝑗 ∈ {2, . . . , 𝐽} such that 𝑟𝑗 = 𝑠, then consider 𝐼 = 𝑗 ∈ {2, . . . , |𝒦|}
and

(𝑙1, . . . , 𝑙𝐼) = (𝑘1, . . . , 𝑘𝑗) ∈ 𝒦 and (𝑠1, . . . , 𝑠𝐼) = (𝑟1, . . . , 𝑟𝑗) ∈ ℛ.

Clearly, (𝑙1, . . . , 𝑙𝐼) and (𝑠1, . . . , 𝑠𝐼) verify properties (i), (ii), (iii) and (iv) 𝑠𝐼 = 𝑠

and 𝑠 ∈ ℛ𝑙𝐼 .

◇ If 𝑟 /∈ {𝑟2, . . . , 𝑟𝐽} but there exists 𝑗 ∈ {2, . . . , 𝐽} such that 𝑘𝑗 = 𝑘. In this case,

consider 𝐼 = 𝑗 ∈ {2, . . . , |𝒦|} and

(𝑙1, . . . , 𝑙𝐼) = (𝑘1, . . . , 𝑘𝑗) ∈ 𝒦 and (𝑠1, . . . , 𝑠𝐼−1, 𝑠𝐼) = (𝑟1, . . . , 𝑟𝑗−1, 𝑠) ∈ ℛ.

Clearly, (𝑙1, . . . , 𝑙𝐼) and (𝑠1, . . . , 𝑠𝐼) verify properties (i), (ii), (iii) and (iv) 𝑠𝐼 = 𝑠

and 𝑠 ∈ ℛ𝑙𝐼 .

◇ If 𝑟 /∈ {𝑟2, . . . , 𝑟𝐽} and 𝑘 /∈ {𝑘2, . . . , 𝑘𝐽}. Since 𝑘 /∈ {𝑘1, . . . , 𝑘𝐽}, then we must

have 𝐽 < |𝒦|. Consider 𝐼 = 𝐽 + 1 ∈ {2, . . . , |𝒦|} and

(𝑙1, . . . , 𝑙𝐼) = (𝑘1, . . . , 𝑘𝐽 , 𝑘) ∈ 𝒦 and (𝑠1, . . . , 𝑠𝐼) = (𝑟1, . . . , 𝑟𝐽 , 𝑟) ∈ ℛ.

240

Clearly, (𝑙1, . . . , 𝑙𝐼) and (𝑠1, . . . , 𝑠𝐼) verify properties (i), (ii) and (iv) 𝑠𝐼 = 𝑠 and

𝑠 ∈ ℛ𝑙𝐼 = ℛ𝑘. Note that ∀ 𝑖 ∈ {1, . . . , 𝐼 − 1}, property (iii) holds by definition

of (𝑘1, . . . , 𝑘𝐽) and (𝑟1, . . . , 𝑟𝐽). In addition, we have 𝑠𝐼−1 = 𝑟𝐽 ∈ ℛ𝑘𝐽 = ℛ𝑠𝐼−1

by definition, and 𝑠𝐼−1 = 𝑟𝐽 = 𝑟 ∈ ℛ𝑘 = ℛ𝑠𝐼 which proves property (iii).

In any case, 𝑠 ∈ 𝒯𝑝,𝑙, and thus ℛ𝑘 ⊂ 𝒯𝑝,𝑙 and ℛ𝑘 ∩𝒯𝑝,𝑙 = ℛ𝑘. Using this fact, we have

Θ =
∑︁

𝑘∈𝒦𝑝,𝑙

∑︁
𝑟∈ℛ𝑘∩𝒯𝑝,𝑙

𝑑*𝑟𝑘

=
∑︁

𝑘∈𝒦𝑝,𝑙∖{𝑙}

∑︁
𝑟∈ℛ𝑘∩𝒯𝑝,𝑙

𝑑*𝑟𝑘 +
∑︁

𝑟∈ℛ𝑙∩𝒯𝑝,𝑙

𝑑*𝑟𝑙

=
∑︁

𝑘∈𝒦𝑝,𝑙∖{𝑙}

∑︁
𝑟∈ℛ𝑘

𝑑*𝑟𝑘 +
∑︁

𝑟∈ℛ𝑙∩𝒯𝑝,𝑙

𝑑*𝑟𝑙

= Θ1 +Θ2,

where Θ1 =
∑︁

𝑘∈𝒦𝑝,𝑙∖{𝑙}

∑︁
𝑟∈ℛ𝑘

𝑑*𝑟𝑘 and Θ2 =
∑︁

𝑟∈ℛ𝑙∩𝒯𝑝,𝑙

𝑑*𝑟𝑙. We know that Θ ∈ N and we

now show that Θ1 ∈ N but Θ2 /∈ N, which leads to the contradiction.

First, by definition we have 𝒦𝑝,𝑙 ∖ {𝑙} ⊂ {1, . . . , 𝑁} and
∑︁
𝑟∈𝐸𝜈𝑘

𝑑*𝑟𝑘 =
∑︁
𝑟∈ℛ𝑘

𝑑*𝑟𝑘. By

feasibility of 𝑑*, we must have

∀ 𝑘 ∈ 𝒦𝑝,𝑙 ∖ {𝑙},
∑︁
𝑟∈ℛ𝑘

𝑑*𝑟𝑘 = 1 ∈ N,

which by summing over all 𝑘 ∈ 𝒦𝑝,𝑙 ∖ {𝑙} gives

∑︁
𝑘∈𝒦𝑝,𝑙∖{𝑙}

∑︁
𝑟∈ℛ𝑘

𝑑*𝑟𝑘 ∈ N,

so

Θ1 ∈ N.

Second, we have by definition 𝑝 ∈ 𝒯𝑝,𝑙 ∩ℛ𝑙, so by non-negativity of 𝑑*, we have

Θ2 =
∑︁

𝑟∈ℛ𝑙∩𝒯𝑝,𝑙

𝑑*𝑟𝑙 > 𝑑*𝑝𝑙 > 0.

241

Similarly, since 𝑞 ∈ ℛ𝑙 ∖ 𝒯𝑝,𝑙 we have

∑︁
𝑟∈ℛ𝑙∖𝒯𝑝,𝑙

𝑑*𝑟𝑙 > 𝑑*𝑞𝑙 > 0,

Using the feasibility of 𝑑* we have

1 =
∑︁
𝑟∈ℛ𝑙

𝑑*𝑟𝑙 =
∑︁

𝑟∈ℛ𝑙∖𝒯𝑝,𝑙

𝑑*𝑟𝑙 +
∑︁

𝑟∈ℛ𝑙∩𝒯𝑝,𝑙

𝑑*𝑟𝑙 =
∑︁

𝑟∈ℛ𝑙∖𝒯𝑝,𝑙

𝑑*𝑟𝑙 +Θ2 > Θ2.

Therefore 0 < Θ2 < 1, so

Θ2 /∈ N.

In conclusion, we have

Θ = Θ1 +Θ2,

with Θ ∈ N, Θ1 ∈ N but Θ2 /∈ N, leading to a contradiction and proving Lemma

14.

Theorem 4. Let 𝑤 ∈ 𝒲 ∩ {0, 1}. If 𝐷* is an extreme point of ℒ(𝑤) such that

𝐷* = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐷∈ℒ(𝑤)

(︀
𝑐𝑇𝐷

)︀
and 𝛾 verifies Condition (A), then

𝐷* ∈ {0, 1}.

Proof. We have proven in Theorem 3. that if 𝐷* = (𝑑*, 𝑓 *) is an extreme point of

ℒ(𝑤), then 𝑑* ∈ {0, 1}. Now we further assume that 𝐷* is optimal and that 𝛾 verifies

Condition (A) to show that 𝑓 * ∈ {0, 1} by contradiction. Let 𝑟 ∈ 𝒮𝐵, since ∀ 𝑘 ∈ 𝐾𝑟,

𝑑*𝑟𝑘 ∈ {0, . . . , 1}, then we have
∑︁
𝑘∈𝐾𝑟

𝑑*𝑟𝑘 ∈ N. Therefore, we have

if 𝑧* = ∼
𝑧𝑟 +

∑︁
𝑘∈𝐾𝑟

𝑑*𝑟𝑘, then 𝑧* ∈ N.

Note that we omit the 𝑟 index in 𝑧* just for the sake of clarity. Recall that since 𝐷*

242

is feasible, we have ∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝑧𝑓 *
𝑟𝑧 =

∼
𝑧𝑟 +

∑︁
𝑘∈𝐾𝑟

𝑑*𝑟𝑘 = 𝑧*.

Let us show that 𝑓 *
𝑟𝑧* = 1, and 𝑓 *

𝑟𝑧 = 0 otherwise. First, if 𝑧* =
∼
𝑧𝑟 or 𝑧* = 𝑍, then

the only feasible solution is 𝑓 *
𝑟𝑧* = 1, and 𝑓 *

𝑟𝑧 = 0 otherwise.

Otherwise, we have 𝑧* ∈ {∼𝑧𝑟+1, . . . , 𝑍−1}. Let us suppose by contradiction that

𝑓 *
𝑟𝑧* < 1. Then, since

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝑧𝑓 *
𝑟𝑧 = 𝑧*, there exist 𝑧 and 𝑧 such that 𝑧 < 𝑧* < 𝑧

with 𝑓 *
𝑟𝑧 > 0 and 𝑓 *

𝑟𝑧 > 0. Let

𝜖 = min
{︀
(𝑧 − 𝑧*) 𝑓 *

𝑟𝑧, (𝑧
* − 𝑧) 𝑓 *

𝑟𝑧

}︀
> 0,

and consider

𝑓𝑟𝑧 = 𝑓 *
𝑟𝑧 −

𝜖

𝑧 − 𝑧* , 𝑓𝑟𝑧 = 𝑓 *
𝑟𝑧 −

𝜖

𝑧* − 𝑧 and 𝑓𝑟𝑧* = 𝑓 *
𝑟𝑧* +

𝜖

𝑧 − 𝑧* +
𝜖

𝑧* − 𝑧 .

Let us show that (𝑑*, 𝑓) ∈ ℒ(𝑤). First, we have

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝑓𝑟𝑧 =
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧 ̸=𝑧,𝑧,𝑧*

𝑓𝑟𝑧 + 𝑓𝑟𝑧 + 𝑓𝑟𝑧 + 𝑓𝑟𝑧*

=
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧 ̸=𝑧,𝑧,𝑧*

𝑓 *
𝑟𝑧 + 𝑓 *

𝑟𝑧 −
𝜖

𝑧 − 𝑧* + 𝑓 *
𝑟𝑧 −

𝜖

𝑧* − 𝑧 + 𝑓 *
𝑟𝑧* +

𝜖

𝑧 − 𝑧* +
𝜖

𝑧* − 𝑧

=
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑓 *
𝑟𝑧 = 1.

Moreover, by definition of 𝜖, we have 1 > 𝑓 *
𝑟𝑧 > 𝑓𝑟𝑧 > 0, 1 > 𝑓 *

𝑟𝑧 > 𝑓𝑟𝑧 > 0,

𝑓𝑟𝑧* > 𝑓 *
𝑟𝑧* > 0 and since

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝑓𝑟𝑧 = 1, we have 𝑓𝑟𝑧* 6 1. Thus 0 6 𝑓 6 1.

243

Finally,

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝑧𝑓𝑟𝑧 =
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧 ̸=𝑧,𝑧,𝑧*

𝑧𝑓𝑟𝑧 + 𝑧𝑓𝑟𝑧 + 𝑧𝑓𝑟𝑧 + 𝑧*𝑓𝑟𝑧*

=
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧 ̸=𝑧,𝑧,𝑧*

𝑧𝑓 *
𝑟𝑧 + 𝑧𝑓 *

𝑟𝑧 −
𝑧𝜖

𝑧 − 𝑧* + 𝑧𝑓 *
𝑟𝑧 −

𝑧𝜖

𝑧* − 𝑧 + 𝑧*𝑓 *
𝑟𝑧* +

𝑧*𝜖

𝑧 − 𝑧* +
𝑧*𝜖

𝑧* − 𝑧

=
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓 *
𝑟𝑧 − 𝜖+ 𝜖

=
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧𝑓 *
𝑟𝑧 = 𝑧*.

so (𝑑*, 𝑓) ∈ ℒ(𝑤). Consequently, by optimality of (𝑑*, 𝑓 *), we have

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝛽𝑧𝑓𝑟𝑧 >
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝛽𝑧𝑓
*
𝑟𝑧.

However,

∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝛽𝑧𝑓𝑟𝑧 =
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧 ̸=𝑧,𝑧,𝑧*

𝛽𝑧𝑓𝑟𝑧 + 𝛽𝑧𝑓𝑟𝑧 + 𝛽𝑧𝑓𝑟𝑧 + 𝛽𝑧*𝑓𝑟𝑧*

=
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝑧 ̸=𝑧,𝑧,𝑧*

𝛽𝑧𝑓
*
𝑟𝑧 + 𝛽𝑧𝑓

*
𝑟𝑧 −

𝜖

𝑧 − 𝑧*𝛽𝑧 + 𝛽𝑧𝑓
*
𝑟𝑧 −

𝜖

𝑧* − 𝑧𝛽𝑧 + 𝛽𝑧*𝑓
*
𝑟𝑧* +

(︂
𝜖

𝑧 − 𝑧* +
𝜖

𝑧* − 𝑧

)︂
𝛽𝑧*

=
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝛽𝑧𝑓
*
𝑟𝑧 −

𝜖 (𝑧 − 𝑧)
(𝑧 − 𝑧*) (𝑧* − 𝑧)

(︂
𝑧* − 𝑧
𝑧 − 𝑧 𝛽𝑧 +

𝑧 − 𝑧*
𝑧 − 𝑧 𝛽𝑧 − 𝛽𝑧*

)︂
.

Since 𝛾 verifies Condition (A), 𝑧*, 𝑧, 𝑧 ∈ {0, . . . , 𝑍} and 𝑧 < 𝑧* < 𝑧, then using

Lemma 12, we have
𝑧* − 𝑧
𝑧 − 𝑧 𝛽𝑧 +

𝑧 − 𝑧*
𝑧 − 𝑧 𝛽𝑧 > 𝛽𝑧* .

Therefore, we have ∑︁
𝑧∈{∼

𝑧𝑟,...,𝑍}

𝛽𝑧𝑓𝑟𝑧 <
∑︁

𝑧∈{∼
𝑧𝑟,...,𝑍}

𝛽𝑧𝑓
*
𝑟𝑧

which leads to a contradiction and concludes the proof of Theorem 4.

244

C.3 Speed up of Λ(𝑣)

Recall that Λ(𝑣) corresponds to

min
(𝑤,𝐷)

(︀
𝑐𝑇𝐷

)︀
Equation (5.20)

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐷 ∈ 𝒟
(𝑤,𝐷) ∈ ℒ∑︁
𝑠∈𝐿𝑛

𝑤𝑛𝑠𝜅𝑛 = 1

Equations (5.7)-(5.12)

Equations (5.13)-(5.14)

∀ 𝑛 ∈ {1, . . . , 𝑁}

As we mention in Section 5.4, there are several variables that we can set up to 0.

Among these, we have the four following ones:

∀ 𝑛, 𝑘 ∈ {1, . . . , 𝑁} s.t. 𝑘 ̸= 𝜅𝑛, then ∀ 𝑠 ∈ 𝐿𝑛, 𝑤𝑛𝑠𝑘 = 0.

Let 𝑛{1, . . . , 𝑁} s.t. 𝜅𝑛 = 1, then ∀ 𝑠 ∈ 𝒮(𝐸) ∖ 𝐿𝑛, 𝑑
𝑖
𝑠 = 0.

∀ 𝑘 ∈ {1, . . . , 𝑁} s.t. 𝜅𝑛 = 𝑘, then ∀ 𝑠 ∈ 𝒮(𝐿) ∖ 𝐿𝑛,∀ 𝑟 ∈ 𝒮(𝐸) ∖ 𝐸𝑛, 𝑑
(𝐿)
𝑠𝑟𝑘 = 0.

∀ 𝑘 ∈ {2, . . . , 𝑁} s.t. 𝜅𝑛 = 𝑘 − 1 and 𝜅𝑚 = 𝑘, then ∀ 𝑟 ∈ 𝒮(𝐸) ∖ 𝐸𝑛, ∀ 𝑠 ∈ 𝒮(𝐿) ∖ 𝐿𝑚, 𝑑
(𝐸)
𝑟𝑠𝑘 = 0.

245

	Introduction
	Container Terminals
	Handling Equipment, Layout and New Technologies
	Operations Research Models
	Notations and Mathematical Background
	Overview and Contributions of the Thesis

	Literature Review
	The Container Relocation Problem and its Variants
	The Container Relocation Problem
	The Stochastic Container Relocation Problem
	The Dynamic Container Relocation Problem
	Other Variants of the CRP

	The Yard Crane Scheduling Problem
	Other Optimization Problems in Storage Yards

	The Container Relocation Problem
	Contributions
	Problem Description
	A New Binary Formulation Based on a Binary Encoding of Configurations
	Preliminaries
	New Binary IP Formulation
	Computational Experiments

	An Average-Case Asymptotic Analysis of the CRP
	Background
	An Average-Case Asymptotic Analysis of CRP

	The Stochastic Container Relocation Problem
	Contributions
	Problem Description
	Motivation
	Assumptions, Notations, and Formulation

	Decision Trees
	Heuristics and Lower Bounds
	Heuristics
	Lower Bounds

	PBFS, a New Optimal Algorithm for the SCRP
	PBFS Algorithm

	PBFSA, Near-Optimal Algorithm with Guarantees for Large Batches
	Hoeffding's Inequality Applied to the SCRP

	Computational Experiments
	Experiment 1: Batch Model with Small Batches
	Experiment 2: Batch Model with Larger Batches
	Experiment 3: Online Model and Comparison with Ku and Arthanari Ku2016a
	Experiment 4: Online Model with a Unique Batch

	The Yard Crane Scheduling Problem with relocations
	Contributions
	Problem Description
	Problem Geometry
	Requests
	Objective Function

	Binary Integer Program and Theoretical Properties
	Formulation
	Relaxation of Integrality Conditions

	Heuristic Procedure for Real-Time Operations
	Search Space Decomposition
	First Stage: Restricted Sampling on L
	Second Stage: Repeated-Random-Start Local Search on V {0,1}

	Computational Experiments
	Randomly Generated Instances
	Data from a Real Terminal
	Main Insights

	Concluding Remarks
	Summary
	Future Research Directions
	Direct Extensions from the Thesis
	New Challenges for Storage Yards

	Appendix on the Container Relocation Problem
	Extensions of CRP-I
	First Extension: Non-Uniform Relocations
	Second Extension: Minimizing Crane Travel Time
	Third Extension: the ``Relaxed Restricted'' CRP

	Proof of Lemma 3

	Appendix on the Stochastic Container Relocation Problem
	Theoretical and Computational Comparison of the Batch and the Online Models
	Theoretical Comparison: Proof of Lemma 4
	Computational Comparison

	Proof of Lemma 8
	Technical Proofs of Section 4.6.1
	Computational Experiments Tables

	Appendix on the Yard Crane Scheduling Problem with Relocations
	Notations Summary
	Technical Proofs
	Speed up of (v)

